




已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
CHAPTER 21,Option Valuation,21-2,Intrinsic value - profit that could be made if the option was immediately exercised Call: stock price - exercise price Put: exercise price - stock price Time value - the difference between the option price and the intrinsic value,Option Values,21-3,Figure 21.1 Call Option Value before Expiration,21-4,Table 21.1 Determinants of Call Option Values,21-5,Restrictions on Option Value: Call,Call value cannot be negative. The option payoff is zero at worst, and highly positive at best. Call value cannot exceed the stock value. Value of the call must be greater than the value of levered equity. Lower bound = adjusted intrinsic value: C S0 - PV (X) - PV (D) (D=dividend),21-6,Figure 21.2 Range of Possible Call Option Values,21-7,Figure 21.3 Call Option Value as a Function of the Current Stock Price,21-8,Early Exercise: Calls,The right to exercise an American call early is valueless as long as the stock pays no dividends until the option expires. The value of American and European calls is therefore identical. The call gains value as the stock price rises. Since the price can rise infinitely, the call is “worth more alive than dead.”,21-9,Early Exercise: Puts,American puts are worth more than European puts, all else equal. The possibility of early exercise has value because: The value of the stock cannot fall below zero. Once the firm is bankrupt, it is optimal to exercise the American put immediately because of the time value of money.,21-10,Figure 21.4 Put Option Values as a Function of the Current Stock Price,21-11,100,120,90,Stock Price,C,10,0,Call Option Value X = 110,Binomial Option Pricing: Text Example,21-12,Alternative Portfolio Buy 1 share of stock at $100 Borrow $81.82 (10% Rate) Net outlay $18.18 Payoff Value of Stock 90 120 Repay loan - 90 - 90 Net Payoff 0 30,18.18,30,0,Payoff Structure is exactly 3 times the Call,Binomial Option Pricing: Text Example,21-13,18.18,30,0,3C,30,0,3C = $18.18 C = $6.06,Binomial Option Pricing: Text Example,21-14,Alternative Portfolio - one share of stock and 3 calls written (X = 110) Portfolio is perfectly hedged: Stock Value 90 120 Call Obligation 0 -30 Net payoff 90 90 Hence 100 - 3C = $81.82 or C = $6.06,Replication of Payoffs and Option Values,21-15,Hedge Ratio,In the example, the hedge ratio = 1 share to 3 calls or 1/3. Generally, the hedge ratio is:,21-16,Assume that we can break the year into three intervals. For each interval the stock could increase by 20% or decrease by 10%. Assume the stock is initially selling at $100.,Expanding to Consider Three Intervals,21-17,S,S +,S + +,S -,S - -,S + -,S + + +,S + + -,S + - -,S - - -,Expanding to Consider Three Intervals,21-18,Possible Outcomes with Three Intervals,21-19,Co = SoN(d1) - Xe-rTN(d2) d1 = ln(So/X) + (r + 2/2)T / (T1/2) d2 = d1 - (T1/2) where Co = Current call option value So = Current stock price N(d) = probability that a random draw from a normal distribution will be less than d,Black-Scholes Option Valuation,21-20,X = Exercise price e = 2.71828, the base of the natural log r = Risk-free interest rate (annualized, continuously compounded with the same maturity as the option) T = time to maturity of the option in years ln = Natural log function Standard deviation of the stock,Black-Scholes Option Valuation,21-21,Figure 21.6 A Standard Normal Curve,21-22,So = 100 X = 95 r = .10 T = .25 (quarter) = .50 (50% per year) Thus:,Example 21.1 Black-Scholes Valuation,21-23,Using a table or the NORMDIST function in Excel, we find that N (.43) = .6664 and N (.18) = .5714. Therefore: Co = SoN(d1) - Xe-rTN(d2) Co = 100 X .6664 - 95 e- .10 X .25 X .5714 Co = $13.70,Probabilities from Normal Distribution,21-24,Implied Volatility Implied volatility is volatility for the stock implied by the option price. Using Black-Scholes and the actual price of the option, solve for volatility. Is the implied volatility consistent with the stock?,Call Option Value,21-25,Black-Scholes Model with Dividends,The Black Scholes call option formula applies to stocks that do not pay dividends. What if dividends ARE paid? One approach is to replace the stock price with a dividend adjusted stock price Replace S0 with S0 - PV (Dividends),21-26,Example 21.3 Black-Scholes Put Valuation,P = Xe-rT 1-N(d2) - S0 1-N(d1) Using Example 21.2 data: S = 100, r = .10, X = 95, = .5, T = .25 We compute: $95e-10x.25(1-.5714)-$100(1-.6664) = $6.35,21-27,P = C + PV (X) - So = C + Xe-rT - So Using the example data P = 13.70 + 95 e -.10 X .25 - 100 P = $6.35,Put Option Valuation: Using Put-Call Parity,21-28,Hedging: Hedge ratio or delta The number of stocks required to hedge against the price risk of holding one option Call = N (d1) Put = N (d1) - 1 Option Elasticity Percentage change in the options value given a 1% change in the value of the underlying stock,Using the Black-Scholes Formula,21-29,Figure 21.9 Call Option Value and Hedge Ratio,21-30,Buying Puts - results in downside protection with unlimited upside potential Limitations Tracking errors if indexes are used for the puts Maturity of puts may be too short Hedge ratios or deltas change as stock values change,Portfolio Insurance,21-31,Figure 21.10 Profit on a Protective Put Strategy,21-32,Figure 21.11 Hedge Ratios Change as the Stock Price Fluctuates,21-33,Hedging On Mispriced Options,Option value is positively related to volatility. If an investor believes that the volatility that is implied in an options price is too low, a profitable trade is possible. Profit must be hedged against a decline in the value of the stock. Performance depends on option price relative to the implied volatility.,21-34,Hedging and Delta,The appropriate hedge will depend on the delta. Delta is the change in the value of the option relative to the change in the value of the stock, or the slope of the option pricing curve.,Delta =,Change in the value of the option Change of the value of the stock,21-35,Example 21.6 Speculating on Mispriced Options,Implied volatility = 33% Investors estimate of true volatility = 35% Option maturity = 60 days Put price P = $4.495 Exercise price and stock price = $90 Risk-free rate = 4% Delta = -.453,21-36,Table 21.3 Profit on a Hedged Put Portfolio,21-37,Example 21.6 Conclusions,As the stock price changes, so do the deltas used to calculate the hedge ratio. Gamma = sensitivity of the delta to the stock price. Gamma is similar to bond convexity. The hedge ratio will change with market conditions. Reba
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 筆譯服務(wù)合同(翻譯中心)-服務(wù)合同7篇
- 2025年龍巖貨運(yùn)資格證考試真題
- 學(xué)校燈光改造工程合同
- 勞務(wù)派遣合同模本
- 工程分包合同總公司與分公司
- 英語基礎(chǔ)題試卷小學(xué)
- 小學(xué)課外英語試卷
- 配電控制設(shè)備市場分析及競爭策略分析報(bào)告
- 簡單的競標(biāo)合同范本
- 分包木工材料合同范本
- 公對公打款合同
- 抗生素種類歸納分類
- 01-BUFR格式應(yīng)用指南(試用版)
- 體育測量與評價(jià)04心肺功能的測量與評價(jià)
- 提高意識風(fēng)險(xiǎn)防范化解能力體會(huì)發(fā)言
- 2023年度危險(xiǎn)作業(yè)安全監(jiān)護(hù)手冊
- 馬克思主義哲學(xué)十講
- 催化材料智慧樹知到答案章節(jié)測試2023年南開大學(xué)
- 中國故事英文版哪吒英文二篇
- GB/T 9846.1-2004膠合板第1部分:分類
- GB/T 32685-2016工業(yè)用精對苯二甲酸(PTA)
評論
0/150
提交評論