




已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
23.1 圖形的旋轉(zhuǎn)(1)第一課時(shí) 教學(xué)內(nèi)容 1什么叫旋轉(zhuǎn)?旋轉(zhuǎn)中心?旋轉(zhuǎn)角? 2什么叫旋轉(zhuǎn)的對應(yīng)點(diǎn)? 教學(xué)目標(biāo) 了解旋轉(zhuǎn)及其旋轉(zhuǎn)中心和旋轉(zhuǎn)角的概念,了解旋轉(zhuǎn)對應(yīng)點(diǎn)的概念及其應(yīng)用它們解決一些實(shí)際問題 通過復(fù)習(xí)平移、軸對稱的有關(guān)概念及性質(zhì),從生活中的數(shù)學(xué)開始,經(jīng)歷觀察,產(chǎn)生概念,應(yīng)用概念解決一些實(shí)際問題 重難點(diǎn)、關(guān)鍵 1重點(diǎn):旋轉(zhuǎn)及對應(yīng)點(diǎn)的有關(guān)概念及其應(yīng)用 2難點(diǎn)與關(guān)鍵:從活生生的數(shù)學(xué)中抽出概念 教具、學(xué)具準(zhǔn)備 小黑板、三角尺 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請同學(xué)們完成下面各題1將如圖所示的四邊形ABCD平移,使點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)D,作出平移后的圖形2如圖,已知ABC和直線L,請你畫出ABC關(guān)于L的對稱圖形ABC 3圓是軸對稱圖形嗎?等腰三角形呢?你還能指出其它的嗎? (口述)老師點(diǎn)評并總結(jié): (1)平移的有關(guān)概念及性質(zhì) (2)如何畫一個(gè)圖形關(guān)于一條直線(對稱軸)的對稱圖形并口述它既有的一些性質(zhì) (3)什么叫軸對稱圖形? 二、探索新知 我們前面已經(jīng)復(fù)習(xí)平移等有關(guān)內(nèi)容,生活中是否還有其它運(yùn)動(dòng)變化呢?回答是肯定的,下面我們就來研究 1請同學(xué)們看講臺上的大時(shí)鐘,有什么在不停地轉(zhuǎn)動(dòng)?旋繞什么點(diǎn)呢?從現(xiàn)在到下課時(shí)鐘轉(zhuǎn)了多少度?分針轉(zhuǎn)了多少度?秒針轉(zhuǎn)了多少度? (口答)老師點(diǎn)評:時(shí)針、分針、秒針在不停地轉(zhuǎn)動(dòng),它們都繞時(shí)針的中心如果從現(xiàn)在到下課時(shí)針轉(zhuǎn)了_度,分針轉(zhuǎn)了_度,秒針轉(zhuǎn)了_度 2再看我自制的好像風(fēng)車風(fēng)輪的玩具,它可以不停地轉(zhuǎn)動(dòng)如何轉(zhuǎn)到新的位置?(老師點(diǎn)評略) 3第1、2兩題有什么共同特點(diǎn)呢? 共同特點(diǎn)是如果我們把時(shí)針、風(fēng)車風(fēng)輪當(dāng)成一個(gè)圖形,那么這些圖形都可以繞著某一固定點(diǎn)轉(zhuǎn)動(dòng)一定的角度 像這樣,把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角 如果圖形上的點(diǎn)P經(jīng)過旋轉(zhuǎn)變?yōu)辄c(diǎn)P,那么這兩個(gè)點(diǎn)叫做這個(gè)旋轉(zhuǎn)的對應(yīng)點(diǎn) 下面我們來運(yùn)用這些概念來解決一些問題 例1如圖,如果把鐘表的指針看做三角形OAB,它繞O點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得到OEF,在這個(gè)旋轉(zhuǎn)過程中: (1)旋轉(zhuǎn)中心是什么?旋轉(zhuǎn)角是什么?(2)經(jīng)過旋轉(zhuǎn),點(diǎn)A、B分別移動(dòng)到什么位置? 解:(1)旋轉(zhuǎn)中心是O,AOE、BOF等都是旋轉(zhuǎn)角 (2)經(jīng)過旋轉(zhuǎn),點(diǎn)A和點(diǎn)B分別移動(dòng)到點(diǎn)E和點(diǎn)F的位置 例2(學(xué)生活動(dòng))如圖,四邊形ABCD、四邊形EFGH都是邊長為1的正方形 (1)這個(gè)圖案可以看做是哪個(gè)“基本圖案”通過旋轉(zhuǎn)得到的? (2)請畫出旋轉(zhuǎn)中心和旋轉(zhuǎn)角(3)指出,經(jīng)過旋轉(zhuǎn),點(diǎn)A、B、C、D分別移到什么位置?(老師點(diǎn)評)(1)可以看做是由正方形ABCD的基本圖案通過旋轉(zhuǎn)而得到的(2)畫圖略(3)點(diǎn)A、點(diǎn)B、點(diǎn)C、點(diǎn)D移到的位置是點(diǎn)E、點(diǎn)F、點(diǎn)G、點(diǎn)H 最后強(qiáng)調(diào),這個(gè)旋轉(zhuǎn)中心是固定的,即正方形對角線的交點(diǎn),但旋轉(zhuǎn)角和對應(yīng)點(diǎn)都是不唯一的 三、鞏固練習(xí) 教材P65 練習(xí)1、2、3 四、應(yīng)用拓展例3兩個(gè)邊長為1的正方形,如圖所示,讓一個(gè)正方形的頂點(diǎn)與另一個(gè)正方形中心重合,不難知道重合部分的面積為,現(xiàn)把其中一個(gè)正方形固定不動(dòng),另一個(gè)正方形繞其中心旋轉(zhuǎn),問在旋轉(zhuǎn)過程中,兩個(gè)正方形重疊部分面積是否發(fā)生變化?說明理由 分析:設(shè)任轉(zhuǎn)一角度,如圖中的虛線部分,要說明旋轉(zhuǎn)后正方形重疊部分面積不變,只要說明SOEE=SODD,那么只要說明OEFODD 五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評) 本節(jié)課要掌握: 1旋轉(zhuǎn)及其旋轉(zhuǎn)中心、旋轉(zhuǎn)角的概念 2旋轉(zhuǎn)的對應(yīng)點(diǎn)及其它們的應(yīng)用 六、布置作業(yè) 1教材 復(fù)習(xí)鞏固1、2、323.1 圖形的旋轉(zhuǎn)(2)第二課時(shí) 教學(xué)內(nèi)容 1對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等 2對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角 3旋轉(zhuǎn)前后的圖形全等及其它們的運(yùn)用 教學(xué)目標(biāo) 理解對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;理解對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;理解旋轉(zhuǎn)前、后的圖形全等掌握以上三個(gè)圖形的旋轉(zhuǎn)的基本性質(zhì)的運(yùn)用 先復(fù)習(xí)旋轉(zhuǎn)及其旋轉(zhuǎn)中心、旋轉(zhuǎn)角和旋轉(zhuǎn)的對應(yīng)點(diǎn)概念,接著用操作幾何、實(shí)驗(yàn)探究圖形的旋轉(zhuǎn)的基本性質(zhì) 重難點(diǎn)、關(guān)鍵 1重點(diǎn):圖形的旋轉(zhuǎn)的基本性質(zhì)及其應(yīng)用 2難點(diǎn)與關(guān)鍵:運(yùn)用操作實(shí)驗(yàn)幾何得出圖形的旋轉(zhuǎn)的三條基本性質(zhì) 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))老師口問,學(xué)生口答 1什么叫旋轉(zhuǎn)?什么叫旋轉(zhuǎn)中心?什么叫旋轉(zhuǎn)角? 2什么叫旋轉(zhuǎn)的對應(yīng)點(diǎn)? 3請獨(dú)立完成下面的題目如圖,O是六個(gè)正三角形的公共頂點(diǎn),正六邊形ABCDEF能否看做是某條線段繞O點(diǎn)旋轉(zhuǎn)若干次所形成的圖形? (老師點(diǎn)評)分析:能看做是一條邊(如線段AB)繞O點(diǎn),按照同一方法連續(xù)旋轉(zhuǎn)60、120、180、240、300形成的 二、探索新知 上面的解題過程中,能否得出什么結(jié)論,請回答下面的問題: 1A、B、C、D、E、F到O點(diǎn)的距離是否相等? 2對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角BOC、COD、DOE、EOF、FOA是否相等? 3旋轉(zhuǎn)前、后的圖形這里指三角形OAB、OBC、OCD、ODE、OEF、OFA全等嗎? 老師點(diǎn)評:(1)距離相等,(2)夾角相等,(3)前后圖形全等,那么這個(gè)是否有一般性?下面請看這個(gè)實(shí)驗(yàn) 請看我手里拿著的硬紙板,我在硬紙板上挖下一個(gè)三角形的洞,再挖一個(gè)點(diǎn)O作為旋轉(zhuǎn)中心,把挖好的硬紙板放在黑板上,先在黑板上描出這個(gè)挖掉的三角形圖案(ABC),然后圍繞旋轉(zhuǎn)中心O轉(zhuǎn)動(dòng)硬紙板,在黑板上再描出這個(gè)挖掉的三角形(ABC),移去硬紙板(分組討論)根據(jù)圖回答下面問題(一組推薦一人上臺說明) 1線段OA與OA,OB與OB,OC與OC有什么關(guān)系? 2AOA,BOB,COC有什么關(guān)系? 3ABC與ABC形狀和大小有什么關(guān)系? 老師點(diǎn)評:1OA=OA,OB=OB,OC=OC,也就是對應(yīng)點(diǎn)到旋轉(zhuǎn)中心相等 2AOA=BOB=COC,我們把這三個(gè)相等的角,即對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角稱為旋轉(zhuǎn)角 3ABC和ABC形狀相同和大小相等,即全等 綜合以上的實(shí)驗(yàn)操作和剛才作的(3),得出 (1)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等; (2)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角; (3)旋轉(zhuǎn)前、后的圖形全等例1如圖,ABC繞C點(diǎn)旋轉(zhuǎn)后,頂點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)D,試確定頂點(diǎn)B對應(yīng)點(diǎn)的位置,以及旋轉(zhuǎn)后的三角形分析:繞C點(diǎn)旋轉(zhuǎn),A點(diǎn)的對應(yīng)點(diǎn)是D點(diǎn),那么旋轉(zhuǎn)角就是ACD,根據(jù)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,即BCB=ACD,又由對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,即CB=CB,就可確定B的位置,如圖所示 解:(1)連結(jié)CD (2)以CB為一邊作BCE,使得BCE=ACD (3)在射線CE上截取CB=CB 則B即為所求的B的對應(yīng)點(diǎn) (4)連結(jié)DB 則DBC就是ABC繞C點(diǎn)旋轉(zhuǎn)后的圖形 例2如圖,四邊形ABCD是邊長為1的正方形,且DE=,ABF是ADE的旋轉(zhuǎn)圖形(1)旋轉(zhuǎn)中心是哪一點(diǎn)?(2)旋轉(zhuǎn)了多少度?(3)AF的長度是多少?(4)如果連結(jié)EF,那么AEF是怎樣的三角形? 分析:由ABF是ADE的旋轉(zhuǎn)圖形,可直接得出旋轉(zhuǎn)中心和旋轉(zhuǎn)角,要求AF的長度,根據(jù)旋轉(zhuǎn)前后的對應(yīng)線段相等,只要求AE的長度,由勾股定理很容易得到ABF與ADE是完全重合的,所以它是直角三角形 解:(1)旋轉(zhuǎn)中心是A點(diǎn) (2)ABF是由ADE旋轉(zhuǎn)而成的 B是D的對應(yīng)點(diǎn) DAB=90就是旋轉(zhuǎn)角 (3)AD=1,DE= AE= 對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點(diǎn) AF= (4)EAF=90(與旋轉(zhuǎn)角相等)且AF=AE EAF是等腰直角三角形 三、鞏固練習(xí): 教材P64 練習(xí)1、2 四、應(yīng)用拓展例3如圖,K是正方形ABCD內(nèi)一點(diǎn),以AK為一邊作正方形AKLM,使L、M在AK的同旁,連接BK和DM,試用旋轉(zhuǎn)的思想說明線段BK與DM的關(guān)系 分析:要用旋轉(zhuǎn)的思想說明就是要用旋轉(zhuǎn)中心、旋轉(zhuǎn)角、對應(yīng)點(diǎn)的知識來說明 五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評) 本節(jié)課應(yīng)掌握:1對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;2對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;3旋轉(zhuǎn)前、后的圖形全等及其它們的應(yīng)用 六、布置作業(yè) 1教材 復(fù)習(xí)鞏固4 綜合運(yùn)用5、6 23.1 圖形的旋轉(zhuǎn)(3)第三課時(shí) 教學(xué)內(nèi)容:選擇不同的旋轉(zhuǎn)中心或不同的旋轉(zhuǎn)角,設(shè)計(jì)出不同的美麗的圖案 教學(xué)目標(biāo):理解選擇不同的旋轉(zhuǎn)中心、不同的旋轉(zhuǎn)角度,會(huì)出現(xiàn)不同的效果,掌握根據(jù)需要用旋轉(zhuǎn)的知識設(shè)計(jì)出美麗的圖案復(fù)習(xí)圖形旋轉(zhuǎn)的基本性質(zhì),著重強(qiáng)調(diào)旋轉(zhuǎn)中心和旋轉(zhuǎn)角然后應(yīng)用已學(xué)的知識作圖,設(shè)計(jì)出美麗的圖案 重難點(diǎn)、關(guān)鍵 1重點(diǎn):用旋轉(zhuǎn)的有關(guān)知識畫圖 2難點(diǎn)與關(guān)鍵:根據(jù)需要設(shè)計(jì)美麗圖案 教具、學(xué)具準(zhǔn)備 小黑板 教學(xué)過程 一、復(fù)習(xí)引入 1(學(xué)生活動(dòng))老師口問,學(xué)生口答 (1)各對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離有何關(guān)系呢? (2)各對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角與旋轉(zhuǎn)角有何關(guān)系? (3)兩個(gè)圖形是旋轉(zhuǎn)前后的圖形,它們?nèi)葐幔?2請同學(xué)獨(dú)立完成下面的作圖題如圖,AOB繞O點(diǎn)旋轉(zhuǎn)后,G點(diǎn)是B點(diǎn)的對應(yīng)點(diǎn),作出AOB旋轉(zhuǎn)后的三角形 (老師點(diǎn)評)分析:要作出AOB旋轉(zhuǎn)后的三角形,應(yīng)找出三方面:第一,旋轉(zhuǎn)中心:O;第二,旋轉(zhuǎn)角:BOG;第三,A點(diǎn)旋轉(zhuǎn)后的對應(yīng)點(diǎn):A 二、探索新知 從上面的作圖題中,我們知道,作圖應(yīng)滿足三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)角、對應(yīng)點(diǎn),而旋轉(zhuǎn)中心、旋轉(zhuǎn)角固定下來,對應(yīng)點(diǎn)就自然而然地固定下來因此,下面就選擇不同的旋轉(zhuǎn)中心、不同的旋轉(zhuǎn)角來進(jìn)行研究 1旋轉(zhuǎn)中心不變,改變旋轉(zhuǎn)角畫出以下圖所示的四邊形ABCD以O(shè)點(diǎn)為中心,旋轉(zhuǎn)角分別為30、60的旋轉(zhuǎn)圖形 2旋轉(zhuǎn)角不變,改變旋轉(zhuǎn)中心畫出以下圖,四邊形ABCD分別為O、O為中心,旋轉(zhuǎn)角都為30的旋轉(zhuǎn)圖形因此,從以上的畫圖中,我們可以得到旋轉(zhuǎn)中心不變,改變旋轉(zhuǎn)角與旋轉(zhuǎn)角不變,改變旋轉(zhuǎn)中心會(huì)產(chǎn)生不同的效果,所以,我們可以經(jīng)過旋轉(zhuǎn)設(shè)計(jì)出美麗的圖案 例1如下圖是菊花一葉和中心與圓圈,現(xiàn)以O(shè)為旋轉(zhuǎn)中心畫出分別旋轉(zhuǎn)45、90、135、180、225、270、315的菊花圖案 分析:只要以O(shè)為旋轉(zhuǎn)中心、旋轉(zhuǎn)角以上面為變化,旋轉(zhuǎn)長度為菊花的最長OA,按菊花葉的形狀畫出即可 解:(1)連結(jié)OA (2)以O(shè)點(diǎn)為圓心,OA長為半徑旋轉(zhuǎn)45,得A (3)依此類推畫出旋轉(zhuǎn)角分別為90、135、180、225、270、315的A、A、A、A、A、A (4)按菊花一葉圖案畫出各菊花一葉 那么所畫的圖案就是繞O點(diǎn)旋轉(zhuǎn)后的圖形例2(學(xué)生活動(dòng))如圖,如果上面的菊花一葉,繞下面的點(diǎn)O為旋轉(zhuǎn)中心,請同學(xué)畫出圖案,它還是原來的菊花嗎? 老師點(diǎn)評:顯然,畫出后的圖案不是菊花,而是另外的一種花了 三、鞏固練習(xí) 教材P65 練習(xí) 四、應(yīng)用拓展例3如圖,如何作出該圖案繞O點(diǎn)按逆時(shí)針旋轉(zhuǎn)90的圖形 分析:該備案是一個(gè)比較復(fù)雜的圖案,是作出幾個(gè)復(fù)合圖形組成的圖案,因此,要先畫出圖中的關(guān)鍵點(diǎn),這些關(guān)鍵點(diǎn)往往是圖案里線的端點(diǎn)、角的頂點(diǎn)、圓的圓心等,然后再根據(jù)旋轉(zhuǎn)的特征,作出這些關(guān)鍵點(diǎn)的對應(yīng)點(diǎn),最后再按原圖案作出旋轉(zhuǎn)后的圖案解:(1)連結(jié)OA,過O點(diǎn)沿OA逆時(shí)針作AOA=90,在射線OA上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 期房活動(dòng)策劃方案
- 派出所消防知識課件視頻
- (2025年)甘肅省天水市【輔警協(xié)警】筆試模擬考試含答案
- 2025至2030CMOS攝像頭模塊(CCM)行業(yè)市場深度研究與戰(zhàn)略咨詢分析報(bào)告
- 2025至2030保險(xiǎn)基金行業(yè)市場深度研究與戰(zhàn)略咨詢分析報(bào)告
- 晨間活動(dòng)展示活動(dòng)方案
- 晚間托管活動(dòng)方案
- 暑假游學(xué)活動(dòng)方案
- 機(jī)構(gòu)公益贈(zèng)書活動(dòng)方案
- 景點(diǎn)投票創(chuàng)意活動(dòng)方案
- 碧桂園案場管理制度
- 房地產(chǎn)營銷績效評估與分析
- 根際微生物組功能解析-洞察及研究
- 2025-2030中國蒸氣產(chǎn)品行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報(bào)告
- 學(xué)術(shù)會(huì)議舉辦流程與技巧
- 規(guī)模豬場管理培訓(xùn)課件
- 2024年四川省儀隴縣事業(yè)單位公開招聘中小學(xué)教師38名筆試題帶答案
- 阻垢劑銷售合同協(xié)議
- 莊浪縣實(shí)驗(yàn)小學(xué)體育校本教材
- 課件:DeepSeek教師培訓(xùn):從工具到伙伴的教育變革
- 警用執(zhí)法記錄儀使用規(guī)范
評論
0/150
提交評論