![線性規(guī)劃問題Matlab求解.doc_第1頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/10/0e5e7556-2383-48c8-a6f2-1cfc30b60ce8/0e5e7556-2383-48c8-a6f2-1cfc30b60ce81.gif)
![線性規(guī)劃問題Matlab求解.doc_第2頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/10/0e5e7556-2383-48c8-a6f2-1cfc30b60ce8/0e5e7556-2383-48c8-a6f2-1cfc30b60ce82.gif)
![線性規(guī)劃問題Matlab求解.doc_第3頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/10/0e5e7556-2383-48c8-a6f2-1cfc30b60ce8/0e5e7556-2383-48c8-a6f2-1cfc30b60ce83.gif)
![線性規(guī)劃問題Matlab求解.doc_第4頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/10/0e5e7556-2383-48c8-a6f2-1cfc30b60ce8/0e5e7556-2383-48c8-a6f2-1cfc30b60ce84.gif)
![線性規(guī)劃問題Matlab求解.doc_第5頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/10/0e5e7556-2383-48c8-a6f2-1cfc30b60ce8/0e5e7556-2383-48c8-a6f2-1cfc30b60ce85.gif)
免費預(yù)覽已結(jié)束,剩余1頁可下載查看
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
用MATLAB優(yōu)化工具箱解線性規(guī)劃 命令:x=linprog(c,A,b) 命令:x=linprog(c,A,b,Aeq,beq)注意:若沒有不等式: 存在,則令A(yù)= ,b= . 若沒有等式約束, 則令A(yù)eq= , beq= .命令:1 x=linprog(c,A,b,Aeq,beq, VLB,VUB) 2 x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) 注意:1 若沒有等式約束, 則令A(yù)eq= , beq= . 2其中X0表示初始點 4、命令:x,fval=linprog()返回最優(yōu)解x及x處的目標(biāo)函數(shù)值fval.例1 解 編寫M文件小xxgh1.m如下:c=-0.4 -0.28 -0.32 -0.72 -0.64 -0.6; A=0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08; b=850;700;100;900; Aeq=; beq=; vlb=0;0;0;0;0;0; vub=;x,fval=linprog(c,A,b,Aeq,beq,vlb,vub)例2 解: 編寫M文件xxgh2.m如下: c=6 3 4; A=0 1 0; b=50; Aeq=1 1 1; beq=120; vlb=30,0,20; vub=; x,fval=linprog(c,A,b,Aeq,beq,vlb,vub例3 (任務(wù)分配問題)某車間有甲、乙兩臺機(jī)床,可用于加工三種工件。假定這兩臺車床的可用臺時數(shù)分別為800和900,三種工件的數(shù)量分別為400、600和500,且已知用三種不同車床加工單位數(shù)量不同工件所需的臺時數(shù)和加工費用如下表。問怎樣分配車床的加工任務(wù),才能既滿足加工工件的要求,又使加工費用最低解 設(shè)在甲車床上加工工件1、2、3的數(shù)量分別為x1、x2、x3,在乙車床上加工工件1、2、3的數(shù)量分別為x4、x5、x6??山⒁韵戮€性規(guī)劃模型:編寫M文件xxgh3.m如下:f = 13 9 10 11 12 8;A = 0.4 1.1 1 0 0 0 0 0 0 0.5 1.2 1.3;b = 800; 900;Aeq=1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1;beq=400 600 500;vlb = zeros(6,1);vub=;x,fval = linprog(f,A,b,Aeq,beq,vlb,vub)例4某廠每日8小時的產(chǎn)量不低于1800件。為了進(jìn)行質(zhì)量控制,計劃聘請兩種不同水平的檢驗員。一級檢驗員的標(biāo)準(zhǔn)為:速度25件/小時,正確率98%,計時工資4元/小時;二級檢驗員的標(biāo)準(zhǔn)為:速度15小時/件,正確率95%,計時工資3元/小時。檢驗員每錯檢一次,工廠要損失2元。為使總檢驗費用最省,該工廠應(yīng)聘一級、二級檢驗員各幾名?解 設(shè)需要一級和二級檢驗員的人數(shù)分別為x1、x2人,編寫M文件xxgh4.m如下:c = 40;36;A=-5 -3;b=-45;Aeq=;beq=;vlb = zeros(2,1);vub=9;15; %調(diào)用linprog函數(shù):x,fval = linprog(c,A,b,Aeq,beq,vlb,vub)結(jié)果為:x = 9.0000 0.0000fval =360即只需聘用9個一級檢驗員。4控制參數(shù)options的設(shè)置Options中常用的幾個參數(shù)的名稱、含義、取值如下:(1) Display: 顯示水平.取值為off時,不顯示輸出; 取值為iter時,顯示每次迭代的信息;取值為final時,顯示最終結(jié)果.默認(rèn)值為final.(2) MaxFunEvals: 允許進(jìn)行函數(shù)評價的最大次數(shù),取值為正整數(shù).(3) MaxIter: 允許進(jìn)行迭代的最大次數(shù),取值為正整數(shù)控制參數(shù)options可以通過函數(shù)optimset創(chuàng)建或修改。命令的格式如下:(1) options=optimset(optimfun) 創(chuàng)建一個含有所有參數(shù)名,并與優(yōu)化函數(shù)optimfun相關(guān)的默認(rèn)值的選項結(jié)構(gòu)options.(2)options=optimset(param1,value1,param2,value2,.) 創(chuàng)建一個名稱為options的優(yōu)化選項參數(shù),其中指定的參數(shù)具有指定值,所有未指定的參數(shù)取默認(rèn)值.(3)options=optimset(oldops,param1,value1,param2, value2,.) 創(chuàng)建名稱為oldops的參數(shù)的拷貝,用指定的參數(shù)值修改oldops中相應(yīng)的參數(shù).例:opts=optimset(Display,iter,TolFun,1e-8) 該語句創(chuàng)建一個稱為opts的優(yōu)化選項結(jié)構(gòu),其中顯示參數(shù)設(shè)為iter, TolFun參數(shù)設(shè)為1e-8.用Matlab解無約束優(yōu)化問題 一元函數(shù)無約束優(yōu)化問題 常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)x,fval= fminbnd(.)(4)x,fval,exitflag= fminbnd(.)(5)x,fval,exitflag,output= fminbnd(.)其中(3)、(4)、(5)的等式右邊可選用(1)或(2)的等式右邊。 函數(shù)fminbnd的算法基于黃金分割法和二次插值法,它要求目標(biāo)函數(shù)必須是連續(xù)函數(shù),并可能只給出局部最優(yōu)解。例1 求 在0x 0,且a11 a12;同理, p2 = b2 - a21 x1- a22 x2 ,b2,a21,a22 02成本與產(chǎn)量成負(fù)指數(shù)關(guān)系甲的成本隨其產(chǎn)量的增長而降低,且有一個漸進(jìn)值,可以假設(shè)為負(fù)指數(shù)關(guān)系, 總利潤為: z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根據(jù)大量的統(tǒng)計數(shù)據(jù),求出系數(shù)b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,1=0.015,c1=20, r2=100,2=0.02,c2=30,則問題轉(zhuǎn)化為無約束優(yōu)化問題:求甲,乙兩個牌號的產(chǎn)量x1,x2,使總利潤z最大.為簡化模型,先忽略成本,并令a12=0,a21=0,問題轉(zhuǎn)化為求: z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2 的極值. 顯然其解為x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,我們把它作為原問題的初始值.模型求解1.建立M-文件fun.m: function f = fun(x) y1=(100-x(1)- 0.1*x(2)-(30*exp(-0.015*x(1)+20)*x(1); y2=(280-0.2*x(1)- 2*x(2)-(100*exp(-0.02*x(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 5 We're family (說課稿)-2024-2025學(xué)年外研版(三起)(2024)英語三年級上冊
- 1《學(xué)習(xí)伴我成長》(說課稿)-部編版道德與法治三年級上冊
- Unit 2 Different families Part B Let's talk(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 2《用水計量時間》說課稿-2024-2025學(xué)年科學(xué)五年級上冊教科版
- 2025產(chǎn)品購銷合同樣書
- 2023九年級數(shù)學(xué)下冊 第25章 投影與視圖25.1 投影第2課時 正投影說課稿 (新版)滬科版001
- 2025婦女發(fā)展監(jiān)測評估項目工程合同管理
- 2025合同模板合伙人利潤分配協(xié)議范本
- 2024-2025學(xué)年高中政治 第3單元 第6課 第1框 源遠(yuǎn)流長的中華文化說課稿 新人教版必修3001
- 現(xiàn)代通信原理與技術(shù)(第五版)PPT全套完整教學(xué)課件
- 社區(qū)獲得性肺炎教學(xué)查房
- 病例展示(皮膚科)
- GB/T 39750-2021光伏發(fā)電系統(tǒng)直流電弧保護(hù)技術(shù)要求
- DB31T 685-2019 養(yǎng)老機(jī)構(gòu)設(shè)施與服務(wù)要求
- 燕子山風(fēng)電場項目安全預(yù)評價報告
- 高一英語課本必修1各單元重點短語
- 糖尿病運動指導(dǎo)課件
- 完整版金屬學(xué)與熱處理課件
- T∕CSTM 00640-2022 烤爐用耐高溫粉末涂料
- 心腦血管病的危害教學(xué)課件
評論
0/150
提交評論