



全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
導(dǎo)學(xué)案設(shè)計學(xué)習(xí)目標(biāo)知識與能力目標(biāo):1.掌握配方法推導(dǎo)求根公式的過程 , 會用公式法求解一元二次方程。 2.能通過判別式= b2-4ac判斷一元二次方程根的情況。過程與方法目標(biāo): 由用配方法推導(dǎo)求根公式的過程,培養(yǎng)學(xué)生的推理能力,培養(yǎng)學(xué)生從特殊到一般、分類討論的解題思想,提高學(xué)生的運(yùn)算能力。情感,態(tài)度,價值觀目標(biāo):通過用公式法解一元二次方程的訓(xùn)練,提高學(xué)生的運(yùn)算能力,并讓學(xué)生在學(xué)習(xí)中獲得成功的體驗,建立學(xué)好數(shù)學(xué)的自信心。自主預(yù)習(xí)一、溫故知新。解下列一元二次方程。(1)x2 = 4 (2)4 x2+ 8x - 1=0合作學(xué)習(xí)二、探索新知:用配方法解方程:ax2+bx+c=0(a0)【分析】把a(bǔ)、b、c也當(dāng)成一個具體數(shù)字,根據(jù)配方法的解題步驟推下去.解:移項,得:ax2+bx= -c二次項系數(shù)化為1,得: 配方,得:x2+x+( )2= -+( )2即(x+ )2= a0,4a20,當(dāng)b2-4ac 0,有 0 開方,得: 寫出方程的解,得: 當(dāng)b2-4ac 0,有 0時,方程ax2+bx+c=0(a0)有 實數(shù)根(2)當(dāng)= 0時,方程ax2+bx+c=0(a0)有 實數(shù)根(3)當(dāng)0時,方程ax2+bx+c=0(a0) 實數(shù)根反過來也成立。不解方程,判定方程根的情況.(1)2x2+3x - 1=0 (2)x2- 2 x= -1 (3)3x2- 2x= -5解:a= , b= ,c= ,=b2-4ac = = 0 此方程 實數(shù)根。2.公式法解一元二次方程的步驟:(1)先將方程化為一般形式: (2)確定a,b,c的值,注意符號。(3)計算= b2-4ac的值。(4)當(dāng)b2-4ac0時,將a、b、c代入式子x=,就可求出方程的根這個式子叫做一元二次方程的 利用求根公式解一元二次方程的方法叫 .例: 用公式法解方程: x2 - 4x=7解: 原方程可化為: a= , b= , c= , = b2-4ac= 此方程 實數(shù)根。 x= = 即: 目標(biāo)評價(課堂檢測)學(xué)以致用用公式法解方程:(1)3x2 -2x -1=0 (2) 4x2 = 4x - 1 (3)2x 2-5x = -2x - 2 (4) x(2 x - 4)= 5 - 8 x 鞏固提升1.已知關(guān)于x的方程x2+2mx+(m-1)2=0,m取什么值時,方程有兩個不相等的實數(shù)根?學(xué)習(xí)收獲:1. 掌握了利用配方法推導(dǎo)解一元二次方程的過程.2. 學(xué)會在運(yùn)用公式前要先判斷一元二
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信托與綠色交通基礎(chǔ)設(shè)施建設(shè)考核試卷
- 體育競賽活動安保措施與實施細(xì)節(jié)考核試卷
- 印刷企業(yè)綠色印刷技術(shù)發(fā)展趨勢分析考核試卷
- 室內(nèi)模擬賽車與駕駛模擬器設(shè)備出租考核試卷
- 整車制造的工藝技術(shù)創(chuàng)新考核試卷
- 家庭插花培訓(xùn)課件
- 借款附加資產(chǎn)合同范本
- 購房合同范本年
- 勞務(wù)人工合同范本
- 樓層拆除工程合同范本
- 班、團(tuán)、隊一體化建設(shè)實施方案
- 如何建構(gòu)結(jié)構(gòu)性思維 課后測試
- 最全的人教初中數(shù)學(xué)常用概念、公式和定理
- 施工方案(行車拆除)
- 橋面結(jié)構(gòu)現(xiàn)澆部分施工方案
- 開網(wǎng)店全部流程PPT課件
- 人教部編版四年級語文下冊《第1課 古詩詞三首》教學(xué)課件PPT小學(xué)優(yōu)秀公開課
- 模具數(shù)控加工技術(shù)概述
- 真速通信密拍暗訪取證系統(tǒng)分冊
- 配電網(wǎng)工程典型設(shè)計10kV電纜分冊
- 質(zhì)量監(jiān)督檢查整改回復(fù)單格式(共4頁)
評論
0/150
提交評論