版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、數(shù)列基礎(chǔ)知識點和方法歸納 1. 等差數(shù)列的定義與性質(zhì)定義:(為常數(shù)),等差中項:成等差數(shù)列前項和性質(zhì):是等差數(shù)列(1)若,則(2)數(shù)列仍為等差數(shù)列,仍為等差數(shù)列,公差為;(3)若三個成等差數(shù)列,可設(shè)為(4)若是等差數(shù)列,且前項和分別為,則(5)為等差數(shù)列(為常數(shù),是關(guān)于的常數(shù)項為0的二次函數(shù))的最值可求二次函數(shù)的最值;或者求出中的正、負分界項,即:當,解不等式組可得達到最大值時的值. 當,由可得達到最小值時的值. (6)項數(shù)為偶數(shù)的等差數(shù)列,有,.(7)項數(shù)為奇數(shù)的等差數(shù)列,有, ,.2. 等比數(shù)列的定義與性質(zhì)定義:(為常數(shù),),.等比中項:成等比數(shù)列,或.前項和:(要注意?。┬再|(zhì):是等比數(shù)列
2、(1)若,則(2)仍為等比數(shù)列,公比為.注意:由求時應注意什么?時,;時,.3求數(shù)列通項公式的常用方法(1)求差(商)法如:數(shù)列,求解 時, 時, 得:,練習數(shù)列滿足,求注意到,代入得;又,是等比數(shù)列,時,(2)疊乘法 如:數(shù)列中,求解 ,又,.(3)等差型遞推公式由,求,用迭加法時,兩邊相加得練習數(shù)列中,求()(4)等比型遞推公式(為常數(shù),)可轉(zhuǎn)化為等比數(shù)列,設(shè)令,是首項為為公比的等比數(shù)列,(5)倒數(shù)法如:,求由已知得:,為等差數(shù)列,公差為,(附:公式法、利用、累加法、累乘法.構(gòu)造等差或等比或、待定系數(shù)法、對數(shù)變換法、迭代法、數(shù)學歸納法、換元法)4. 求數(shù)列前n項和的常用方法(1) 裂項法把
3、數(shù)列各項拆成兩項或多項之和,使之出現(xiàn)成對互為相反數(shù)的項. 如:是公差為的等差數(shù)列,求解:由練習求和:(2)錯位相減法若為等差數(shù)列,為等比數(shù)列,求數(shù)列(差比數(shù)列)前項和,可由,求,其中為的公比. 如: 時,時,(3)倒序相加法把數(shù)列的各項順序倒寫,再與原來順序的數(shù)列相加. 相加練習已知,則 由原式二、等差等比數(shù)列復習題一、 選擇題1、如果一個數(shù)列既是等差數(shù)列,又是等比數(shù)列,則此數(shù)列 ( )(A)為常數(shù)數(shù)列 (B)為非零的常數(shù)數(shù)列 (C)存在且唯一 (D)不存在2.、在等差數(shù)列中,,且,成等比數(shù)列,則的通項公式為 ( )(A) (B) (C)或 (D)或3、已知成等比數(shù)列,且分別為與、與的等差中項
4、,則的值為 ( )(A) (B) (C) (D) 不確定4、互不相等的三個正數(shù)成等差數(shù)列,是a,b的等比中項,是b,c的等比中項,那么,三個數(shù)( )(A)成等差數(shù)列不成等比數(shù)列 (B)成等比數(shù)列不成等差數(shù)列(C)既成等差數(shù)列又成等比數(shù)列 (D)既不成等差數(shù)列,又不成等比數(shù)列5、已知數(shù)列的前項和為,則此數(shù)列的通項公式為 ( )(A) (B) (C) (D)6、已知,則 ( )(A)成等差數(shù)列 (B)成等比數(shù)列 (C)成等差數(shù)列 (D)成等比數(shù)列7、數(shù)列的前項和,則關(guān)于數(shù)列的下列說法中,正確的個數(shù)有 ( )一定是等比數(shù)列,但不可能是等差數(shù)列 一定是等差數(shù)列,但不可能是等比數(shù)列 可能是等比數(shù)列,也可
5、能是等差數(shù)列 可能既不是等差數(shù)列,又不是等比數(shù)列 可能既是等差數(shù)列,又是等比數(shù)列(A)4 (B)3 (C)2 (D)18、數(shù)列1,前n項和為 ( )(A) (B) (C) (D)9、若兩個等差數(shù)列、的前項和分別為 、,且滿足,則的值為 ( )(A) (B) (C) (D)10、已知數(shù)列的前項和為,則數(shù)列的前10項和為 ( )(A)56 (B)58 (C)62 (D)6011、已知數(shù)列的通項公式為, 從中依次取出第3,9,27,3n, 項,按原來的順序排成一個新的數(shù)列,則此數(shù)列的前n項和為 ( )(A) (B) (C) (D)二、填空題13、各項都是正數(shù)的等比數(shù)列,公比,成等差數(shù)列,則公比= 1
6、4、已知等差數(shù)列,公差,成等比數(shù)列,則= 15、已知數(shù)列滿足,則= 16、在2和30之間插入兩個正數(shù),使前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,則插入的這兩個數(shù)的等比中項為 二、 解答題17、已知數(shù)列是公差不為零的等差數(shù)列,數(shù)列是公比為的等比數(shù)列, ,求公比及。18、已知等差數(shù)列的公差與等比數(shù)列的公比相等,且都等于 , ,,求。19、有四個數(shù),其中前三個數(shù)成等比數(shù)列,其積為216,后三個數(shù)成等差數(shù)列,其和為36,求這四個數(shù)。20、已知為等比數(shù)列,求的通項式。21、數(shù)列的前項和記為()求的通項公式;()等差數(shù)列的各項為正,其前項和為,且,又成等比數(shù)列,求22、已知數(shù)列滿足(I)求數(shù)列的通項公式;
7、(II)若數(shù)列滿足,證明:是等差數(shù)列;第九單元 數(shù)列綜合題一、 選擇題題號123456789101112答案BDCAAACADDDD二、 填空題13. 14. 15. 16. 6三、解答題17.a=a1,a=a10=a1+9d,a=a46=a1+45d 由abn為等比數(shù)例,得(a1+9d)2=a1(a1+45d)得a1=3d,即ab1=3d,ab2=12d,ab3=48d.q=4 又由abn是an中的第bna項,及abn=ab14n-1=3d4n-1,a1+(bn-1)d=3d4n-1 bn=34n-1-218. a3=3b3 , a1+2d=3a1d2 , a1(1-3d2)=-2d a5=5b5, a1+4d=5a1d4 , a1(1-5d4)=-4d ,得=2, d2=1或d2=,由題意,d=,a1=-。an=a1+(n-1)d=(n-6) bn=a1dn-1=-()n-119.設(shè)這四個數(shù)為則 由,得a3=216,a=6 代入,得3aq=36,q=2 這四個數(shù)為3,6,12,1820.解: 設(shè)等比數(shù)列an的公比為q, 則q0, a2= = , a4=a3q=2q所以 + 2q= , 解得q1= , q2= 3, 當q1=, a1=18.所以 an=18()n1= = 233n. 當q=3時, a1= , 所以an
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度滅蟑螂專業(yè)人才培訓與認證合同4篇
- 二零二五年度生態(tài)旅游區(qū)經(jīng)營權(quán)轉(zhuǎn)讓合同3篇
- 二零二五年度大型吊車機械租賃與現(xiàn)場管理合同范本3篇
- 全年軟件購買合同2025版詳解
- 2025年度場物業(yè)社區(qū)公共空間設(shè)計與改造合同4篇
- 2025年度場地施工合同檔案管理及保密協(xié)議4篇
- 2025年度地鐵隧道施工合同范本4篇
- 個體運輸業(yè)務(wù)合作合同集錦(2024)版B版
- 二零二五版旅游餐飲服務(wù)外包合同4篇
- 2025年度廚具行業(yè)知識產(chǎn)權(quán)保護與維權(quán)服務(wù)合同4篇
- 2025貴州貴陽市屬事業(yè)單位招聘筆試和高頻重點提升(共500題)附帶答案詳解
- 2024年住院醫(yī)師規(guī)范化培訓師資培訓理論考試試題
- 期末綜合測試卷(試題)-2024-2025學年五年級上冊數(shù)學人教版
- 2024年廣東省公務(wù)員錄用考試《行測》試題及答案解析
- 結(jié)構(gòu)力學本構(gòu)模型:斷裂力學模型:斷裂力學實驗技術(shù)教程
- 黑色素的合成與美白產(chǎn)品的研究進展
- 金蓉顆粒-臨床用藥解讀
- 法治副校長專題培訓課件
- 《幼兒園健康》課件精1
- 汽車、電動車電池火災應對
- 中醫(yī)藥適宜培訓-刮痧療法教學課件
評論
0/150
提交評論