




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、分別是 正弦 余弦 正切 余切 正割 余割 角 的所有三角函數(shù)(見:函數(shù)圖形曲線)在平面直角坐標系xOy中,從點O引出一條射線OP,設(shè)旋轉(zhuǎn)角為,設(shè)OP=r,P點的坐標為(x,y)有正弦函數(shù) sin=y/r余弦函數(shù) cos=x/r正切函數(shù) tan=y/x余切函數(shù) cot=x/y正割函數(shù) sec=r/x余割函數(shù) csc=r/y(斜邊為r,對邊為y,鄰邊為x。)以及兩個不常用,已趨于被淘汰的函數(shù):正矢函數(shù) versin =1-cos余矢函數(shù) covers =1-sin正弦(sin):角的對邊比上斜邊 余弦(cos):角的鄰邊比上斜邊 正切(tan):角的對邊比上鄰邊 余切(cot):角的鄰邊比上對邊
2、 正割(sec):角的斜邊比上鄰邊 余割(csc):角的斜邊比上對邊 編輯本段同角三角函數(shù)間的基本關(guān)系式:平方關(guān)系:sin2cos211tan2sec21cot2csc2積的關(guān)系:sin=tancoscos=cotsintan=sinsec cot=coscscsec=tancsc csc=seccot倒數(shù)關(guān)系:tan cot1sin csc1cos sec1商的關(guān)系:sin/costansec/csccos/sincotcsc/sec直角三角形ABC中, 角A的正弦值就等于角A的對邊比斜邊, 余弦等于角A的鄰邊比斜邊 正切等于對邊比鄰邊,1三角函數(shù)恒等變形公式兩角和與差的三角函數(shù):cos(+
3、)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)三角和的三角函數(shù):sin(+)=sincoscos+cossincos+coscossin-sinsinsincos(+)=coscoscos-cossinsin-sincossin-sinsincostan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)輔助角公式:Asin+Bcos=(A²+B²)(1/2
4、)sin(+arctan(B/A),其中sint=B/(A²+B²)(1/2)cost=A/(A²+B²)(1/2)tant=B/AAsin-Bcos=(A²+B²)(1/2)cos(-t),tant=A/B倍角公式:sin(2)=2sincos=2/(tan+cot)cos(2)=cos²()-sin²()=2cos²()-1=1-2sin²()tan(2)=2tan/1-tan²()三倍角公式:sin(3)=3sin-4sin³()=4sinsin(60+)sin(60-
5、)cos(3)=4cos³()-3cos=4coscos(60+)cos(60-) tan(3)=tan a tan(/3+a) tan(/3-a)半角公式:sin(/2)=(1-cos)/2)cos(/2)=(1+cos)/2)tan(/2)=(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin降冪公式sin²()=(1-cos(2)/2=versin(2)/2cos²()=(1+cos(2)/2=covers(2)/2tan²()=(1-cos(2)/(1+cos(2)萬能公式:sin=2tan(/2)/1+tan²
6、;(/2)cos=1-tan²(/2)/1+tan²(/2)tan=2tan(/2)/1-tan²(/2)積化和差公式:sincos=(1/2)sin(+)+sin(-)cossin=(1/2)sin(+)-sin(-)coscos=(1/2)cos(+)+cos(-)sinsin=-(1/2)cos(+)-cos(-)和差化積公式: sin+sin=2sin(+)/2cos(-)/2sin-sin=2cos(+)/2sin(-)/2cos+cos=2cos(+)/2cos(-)/2cos-cos=-2sin(+)/2sin(-)/2推導公式tan+cot=2/s
7、in2tan-cot=-2cot21+cos2=2cos²1-cos2=2sin²1+sin=(sin/2+cos/2)²其他:sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及sin²()+sin²(-2/3)+sin²(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0cosx+cos2x+.+cosnx= sin(n+1)
8、x+sinnx-sinx/2sinx證明:左邊=2sinx(cosx+cos2x+.+cosnx)/2sinx=sin2x-0+sin3x-sinx+sin4x-sin2x+.+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x/2sinx (積化和差)=sin(n+1)x+sinnx-sinx/2sinx=右邊等式得證sinx+sin2x+.+sinnx= - cos(n+1)x+cosnx-cosx-1/2sinx證明:左邊=-2sinxsinx+sin2x+.+sinnx/(-2sinx)=cos2x-cos0+cos3x-cosx+.+cosnx-cos(n-2)
9、x+cos(n+1)x-cos(n-1)x/(-2sinx)=- cos(n+1)x+cosnx-cosx-1/2sinx=右邊等式得證三倍角公式推導sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin&s
10、up2;a)=4sina(3/2)²-sin²a=4sina(sin²60-sin²a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin(60+a)/2cos(60-a)/2*2sin(60-a)/2cos(60+a)/2=4sinasin(60+a)sin(60-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosacos²a-(3/2)²=4cosa(cos²a-cos²30)=4cosa(cosa+cos30)(cosa-c
11、os30)=4cosa*2cos(a+30)/2cos(a-30)/2*-2sin(a+30)/2sin(a-30)/2=-4cosasin(a+30)sin(a-30)=-4cosasin90-(60-a)sin-90+(60+a)=-4cosacos(60-a)-cos(60+a)=4cosacos(60-a)cos(60+a)上述兩式相比可得tan3a=tanatan(60-a)tan(60+a) 編輯本段三角函數(shù)的誘導公式公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2k)sin cos(2k)cos tan(2k)tan cot(2k)cot 公式二: 設(shè)為任意
12、角,+的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系: sin()sin cos()cos tan()tan cot()cot 公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系: sin()sin cos()cos tan()tan cot()cot 公式四: 利用公式二和公式三可以得到-與的三角函數(shù)值之間的關(guān)系: sin()sin cos()cos tan()tan cot()cot 公式五: 利用公式一和公式三可以得到2-與的三角函數(shù)值之間的關(guān)系: sin(2)sin cos(2)cos tan(2)tan cot(2)cot 公式六: /2及3/2與的三角函數(shù)值之間的關(guān)系: sin(/2)cos co
13、s(/2)sin tan(/2)cot cot(/2)tan sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan (以上kZ) 補充:6954種誘導公式的表格以及推導方法(定名法則和定號法則) f()f()sincostancotseccsc360k+sincostancotseccsc90-cossincottancscsec90+cos-sin-cot-tan-cs
14、csec180-sin-cos-tan-cot-seccsc180+-sin-costancot-sec-csc270-cos-sincottan-csc-sec270+-cossin-cot-tancsc-sec360-sincos-tan-cotsec-csc-sincos-tan-cotsec-csc定名法則90的奇數(shù)倍+的三角函數(shù),其絕對值與三角函數(shù)的絕對值互為余函數(shù)。90的偶數(shù)倍+的三角函數(shù)與的三角函數(shù)絕對值相同。也就是“奇余偶同,奇變偶不變”定號法則將看做銳角(注意是“看做”),按所得的角的象限,取三角函數(shù)的符號。也就是“象限定號,符號看象限”比如:90+。定名:90是90的奇數(shù)倍
15、,所以應(yīng)取余函數(shù);定號:將看做銳角,那么90+是第二象限角,第二象限角的正弦為負,余弦為正。所以sin(90+)=cos , cos(90+)-sin 這個非常神奇,屢試不爽 編輯本段三角形與三角函數(shù)1、正弦定理:在三角形中,各邊和它所對的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R (其中R為外接圓的半徑) 2、第一余弦定理:三角形中任意一邊等于其他兩邊以及對應(yīng)角余弦的交叉乘積的和,即a=c cosB + b cosC3、第二余弦定理:三角形中任何一邊的平方等于其它兩邊的平方之和減去這兩邊與它們夾角的余弦的積的2倍,即a2=b2+c2-2bc cosA4、正切定理(na
16、pier比擬):三角形中任意兩邊差和的比值等于對應(yīng)角半角差和的正切比值,即(a-b)/(a+b)=tan(A-B)/2/tan(A+B)/2=tan(A-B)/2/cot(C/2)5、三角形中的恒等式:對于任意非直角三角形中,如三角形ABC,總有tanA+tanB+tanC=tanAtanBtanC證明:已知(A+B)=(-C)所以tan(A+B)=tan(-C)則(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)整理可得tanA+tanB+tanC=tanAtanBtanC類似地,我們同樣也可以求證:當+=n(nZ)時,總有tan+tan+tan=
17、tantantan 編輯本段部分高等內(nèi)容高等代數(shù)中三角函數(shù)的指數(shù)表示(由泰勒級數(shù)易得):sinx=e(ix)-e(-ix)/(2i)cosx=e(ix)+e(-ix)/2tanx=e(ix)-e(-ix)/ie(ix)+ie(-ix)泰勒展開有無窮級數(shù),ez=exp(z)1z/1!z2/2!z3/3!z4/4!zn/n! 此時三角函數(shù)定義域已推廣至整個復(fù)數(shù)集。三角函數(shù)作為微分方程的解:對于微分方程組 y=-y;y=y,有通解Q,可證明Q=Asinx+Bcosx,因此也可以從此出發(fā)定義三角函數(shù)。補充:由相應(yīng)的指數(shù)表示我們可以定義一種類似的函數(shù)雙曲函數(shù),其擁有很多與三角函數(shù)的類似的性質(zhì),二者相映成
18、趣。:角度a 0 30 45 60 90 1801.sina 0 1/2 2/2 3/2 1 02.cosa 1 3/2 2/2 1/2 0 -13.tana 0 3/3 1 3 / 04.cota / 3 1 3/3 0 /(注:“”為根號) 編輯本段三角函數(shù)的計算冪級數(shù) c0+c1x+c2x2+.+cnxn+.=cnxn (n=0.) c0+c1(x-a)+c2(x-a)2+.+cn(x-a)n+.=cn(x-a)n (n=0.)它們的各項都是正整數(shù)冪的冪函數(shù), 其中c0,c1,c2,.cn.及a都是常數(shù), 這種級數(shù)稱為冪級數(shù).泰勒展開式(冪級數(shù)展開法):f(x)=f(a)+f(a)/1!
19、*(x-a)+f(a)/2!*(x-a)2+.f(n)(a)/n!*(x-a)n+.實用冪級數(shù):ex = 1+x+x2/2!+x3/3!+.+xn/n!+.ln(1+x)= x-x2/3+x3/3-.(-1)k-1*xk/k+. (|x|1)sin x = x-x3/3!+x5/5!-.(-1)k-1*x2k-1/(2k-1)!+. (-x)cos x = 1-x2/2!+x4/4!-.(-1)k*x2k/(2k)!+. (-x)arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + . (|x|1)arccos x = - ( x + 1/2*x3/3 + 1*
20、3/(2*4)*x5/5 + . ) (|x|1)arctan x = x - x3/3 + x5/5 - . (x1)sinh x = x+x3/3!+x5/5!+.(-1)k-1*x2k-1/(2k-1)!+. (-x)cosh x = 1+x2/2!+x4/4!+.(-1)k*x2k/(2k)!+. (-x)arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - . (|x|1)arctanh x = x + x3/3 + x5/5 + . (|x|1)在解初等三角函數(shù)時,只需記住公式便可輕松作答,在競賽中,往往會用到與圖像結(jié)合的方法求三角函數(shù)值、三角函數(shù)
21、不等式、面積等等。-傅立葉級數(shù)(三角級數(shù)) f(x)=a0/2+(n=0.) (ancosnx+bnsinnx) a0=1/(.-) (f(x)dxan=1/(.-) (f(x)cosnx)dxbn=1/(.-) (f(x)sinnx)dx三角函數(shù)的數(shù)值符號正弦第一,二象限為正,第三,四象限為負余弦第一,四象限為正第二,三象限為負正切第一,三象限為正第二,四象限為負 編輯本段三角函數(shù)定義域和值域sin(x),cos(x)的定義域為R,值域為-1,1 tan(x)的定義域為x不等于/2+k,值域為R cot(x)的定義域為x不等于k,值域為R 編輯本段初等三角函數(shù)導數(shù)y=sinx-y=cosx y=cosx-y=-sinx y=tanx-y=1/(cosx)2; =(secx)2;y=cotx-y=-1/(sinx)2 =-(cscx)2;y=secx-y=secx
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度文化產(chǎn)業(yè)產(chǎn)權(quán)轉(zhuǎn)讓與市場推廣合同
- 2025年度委托收款與新能源項目合作合同
- 2025年度乙方轉(zhuǎn)丙方特許經(jīng)營合同模板
- 2025年度家居裝修工人安全責任免除協(xié)議書
- 2025年度電影演員檔期聘用合同
- 2025年度土地承包經(jīng)營權(quán)流轉(zhuǎn)與農(nóng)村電商合作合同
- 2025年度危重病人治療免責協(xié)議書(特定醫(yī)療機構(gòu)版)
- 2025年度文化產(chǎn)業(yè)發(fā)展自愿退股及項目運營合同模板
- 2025年度養(yǎng)老機構(gòu)委托管理及運營合作協(xié)議范本
- 信訪接待室改造工程合同
- 語文課堂中的多媒體教學方法研究
- 民用無人機操控員執(zhí)照(CAAC)考試復(fù)習重點題庫500題(含答案)
- 2025年春新北師大版物理八年級下冊課件 第六章 質(zhì)量和密度 第三節(jié) 密度的測量與應(yīng)用
- 北京市朝陽區(qū)2025下半年事業(yè)單位招聘149人歷年高頻重點提升(共500題)附帶答案詳解
- 肩袖損傷課件
- DB3207-T 1047-2023 羊肚菌-豆丹綜合種養(yǎng)技術(shù)規(guī)程
- 鋼筋安裝施工技術(shù)交底
- 2025年下學期八年級物理備課組工作計劃
- 聘任全職圍棋教練合同范例
- 華大新高考聯(lián)盟2025屆高三11月教學質(zhì)量測評生物含答案
- 心水病的中醫(yī)護理方案
評論
0/150
提交評論