高級中學(xué)競賽教學(xué)教程2.3.4磁場對運(yùn)動電荷的作用_第1頁
高級中學(xué)競賽教學(xué)教程2.3.4磁場對運(yùn)動電荷的作用_第2頁
高級中學(xué)競賽教學(xué)教程2.3.4磁場對運(yùn)動電荷的作用_第3頁
高級中學(xué)競賽教學(xué)教程2.3.4磁場對運(yùn)動電荷的作用_第4頁
高級中學(xué)競賽教學(xué)教程2.3.4磁場對運(yùn)動電荷的作用_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、_ 3。4 磁場對運(yùn)動電荷的作用341、洛倫 茲力載流導(dǎo)線所受的安培力,我們可看為是磁場作用給運(yùn)動電荷即自由電子的力,經(jīng)自由電子與導(dǎo)體晶格的碰撞而傳遞給導(dǎo)線的。根據(jù)安培定律sinlibf,而電流強(qiáng)度與運(yùn)動電荷有關(guān)系qnvsi, 角既是電流元li與b 的夾角,也可視為帶電粒子的速度v與b之間的夾角,l長導(dǎo)線中有粒子數(shù)lsnn,則每個電子受到的力即洛倫茲力為sinsinqvblsnlqnvsbnff洛倫茲力總是與粒子速度垂直, 因此洛倫茲力不作功, 不能改變運(yùn)動電荷速度的大小,只能改變速度的方向,使路徑發(fā)生彎曲。洛倫茲力的方向從圖3-4-1 可以看出,它一定與磁場 (b)的方向垂直,也與粒子運(yùn)動

2、(v)方向垂直,即與v、 b 所在的平面垂直, 具體方向可用左手定則判定。但應(yīng)注意,這里所說的粒子運(yùn)動方向是指正電荷運(yùn)動的方向,它恰與負(fù)電荷沿相反方向運(yùn)動等效。o xyzvfqbv圖 3-4-1_ 342、帶電粒子在勻強(qiáng)磁場中的運(yùn)動規(guī)律帶電粒子在勻強(qiáng)磁場中的運(yùn)動規(guī)律與粒子的初始狀態(tài)有關(guān)具體如下:如果帶電粒子原來靜止, 它即使在磁場中也不會受洛倫磁力的作用,因而保持靜止。如果帶電粒子運(yùn)動的方向恰與磁場方向在一條直線上,該粒子仍不受洛倫磁力的作用,粒子就以這個速度在磁場中做勻速直線運(yùn)動。帶電粒子速度方向與磁場方向垂直,帶電粒子在垂直于磁場方向的平面內(nèi)以入射速度v作勻速圓周運(yùn)動。帶電粒子在勻強(qiáng)磁場中

3、作勻速圓周運(yùn)動的四個基本公式。(1)向心力公式:rvmqvb2(2)軌道半徑公式:bqmvr(3)周期、頻率和角頻率公式,即:bqmvrt22,mbqtf21,mbqft22(4) 動能公式:mbqrmpmvek2)(221222如圖 3-4-2 所示,在洛倫茲力作用下,一個作勻速圓周運(yùn)動的粒子,不論a b o ff圖 3-4-2_ 沿順時針方向運(yùn)動還是沿逆時針方向運(yùn)動,從a 點到 b 點,均具有下述特點:(1)軌道圓心 (o)總是位于 a、b 兩點洛倫茲力 (f)的交點上或 ab 弦的中垂線oo與任一個 f 的交點上。(2)粒子的速度偏向角等于回旋角a, 并等于 ab 弦與切線的夾角 (弦切

4、角)的兩倍,即ta2。磁場中帶電粒子運(yùn)動的方向一般是任意的,但任何一個帶電粒子運(yùn)動的速度(v)都可以在垂直于磁場方向和平行于磁場方向進(jìn)行分解,得到v和/v兩個分速度。根據(jù)運(yùn)動的獨立性可知,這樣的帶電粒子一方面以/v在磁場方向上作勻速運(yùn)動,一方面又在垂直于磁場的方向上作速率為v的勻速圓周運(yùn)動。實際上粒子作螺旋線運(yùn)動(如圖 3-4-3) ,這種螺旋線運(yùn)動的周期和螺距大小讀者自己分析并不難解決。其螺旋運(yùn)動的周期qbmt/2,其運(yùn)動規(guī)律:螺旋運(yùn)動回旋半徑:qbmvrsin螺旋運(yùn)動螺距:qbmvtvh/cos2/343、霍爾效應(yīng)vvvfbr圖 3-4-3_ 將一載流導(dǎo)體放在磁場中,由于洛倫茲力的作用,會

5、使帶電粒子 (或別的載流子 )發(fā)生橫向偏轉(zhuǎn),在磁場和電流二者垂直的方向上出現(xiàn)橫向電勢差,這一現(xiàn)象稱為霍爾效應(yīng)。如圖 3-4-4 所示,電流 i 在導(dǎo)體中流動,設(shè)導(dǎo)體橫截面高h(yuǎn)、寬為 d 勻強(qiáng)磁場方向垂直與導(dǎo)線前、 后兩表面向外, 磁感強(qiáng)度為 b,導(dǎo)體內(nèi)自由電子密度為n,定向移動速度vdnevhi由于洛倫茲力作用, 自由電子向上表面聚集, 下表面留下正離子, 結(jié)果上下表面間形成電場,存在電勢差u,這個電場對電子的作用力方向向下,大小為hueeef當(dāng) f 與洛倫磁力 f 相平衡時,上、下表面電荷達(dá)到穩(wěn)定,則有evbhuenedibu如果導(dǎo)電的載流子是正電荷,則上表面聚集正電荷,下表面為負(fù)電勢,電勢

6、差正、負(fù)也正好相反。hdei圖 3-4-4bliaad圖 3-4-5_ 下面來分析霍爾電勢差,求出霍爾系數(shù)。在圖 3-4-5 中,設(shè)大塊導(dǎo)體的長和寬分別為l 和 d,單位體積自由電荷密度為 n,電荷定向移動速率為v,則電流nqldvi。假定形成電流的電荷是正電荷, 其定向移動方向就是電流方向。 根據(jù)左手定則,正電荷向上積聚, 下表面附近缺少正電荷則呈現(xiàn)負(fù)電荷積聚,上正下負(fù)電壓為aua,正電荷受到跟磁場力反向的電場力lauaqqef的作用。電場對正電荷向上的偏移積聚起阻礙作用,當(dāng)最后達(dá)到平衡時qbvlauaq,可得nqdbinqldiblblvaua1??梢姡碚撏茖?dǎo)的結(jié)果跟實驗結(jié)果完全一致,系

7、數(shù)nqk1。既然 k 跟 n 有關(guān),n 表征電荷濃度, 那么通過實驗測定k 值可以確定導(dǎo)體或半導(dǎo)體的電荷濃度n,半導(dǎo)體的 n 值比金屬導(dǎo)體小得多, 所以 k 值也大得多。 此外根據(jù)左手定則還可知, 即使電流 i 就是圖 3-4-6 中的流向, 如果參與流動的是正電荷,那么電壓就是上正下負(fù); 如果參與定向移動的是自由電子,那么電壓就是上負(fù)下正了?;魻栯妱莸母叩透雽?dǎo)體是p 型的還是 n 型的有如此的關(guān)系:上正下負(fù)的是 p 型半導(dǎo)體,定向載流子是帶正電的空穴:上負(fù)下正的是n 型半導(dǎo)體,如果 k 值小得多就是金屬導(dǎo)體,定向載流子是自由電子。_ 344、磁聚焦運(yùn)動電荷在磁場中的螺旋運(yùn)動被應(yīng)用于“磁聚焦

8、技術(shù)”。如圖 3-4-7 ,電子束經(jīng)過 a、b 板上恒定電場加速后,進(jìn)入c、d 極板之間電場,c、d 板上加交變電壓,所以飛出c、d 板后粒子速度v方向不同,從 a 孔穿入螺線管磁場中,由于v大小差不多,且v與 b夾角很小,則vvvcos/vvvsin由于速度分量v不同,在磁場中它們將沿不同半徑的螺旋線運(yùn)動。 但由于它們速度/v分量近似相等,經(jīng)過qbmvqbmvh22/后又相聚于a點,這與光束經(jīng)透鏡后聚焦的現(xiàn)象有些類似,所以叫做磁聚焦現(xiàn)象。磁聚焦原理被廣泛地應(yīng)用于電真空器件如電子顯微鏡。345、復(fù)合場中離子的運(yùn)動1電場和磁場區(qū)域獨立abdaaii圖 3-4-7x y p q 圖 3-4-8 _

9、 磁場與電場不同, 磁場中,洛倫磁力對運(yùn)動電荷不做功,只改變帶電粒子速度方向,所以在勻強(qiáng)磁場中帶電粒子的運(yùn)動主要表現(xiàn)為:勻速圓周運(yùn)動、 螺旋運(yùn)動、勻速直線運(yùn)動。而電場中,電荷受到電場力作用,電場力可能對電荷做功,因而改變速度大小和方向, 但電場是保守場, 電場力做功與運(yùn)動路徑無關(guān)。處理獨立的電場和磁場中運(yùn)動電荷問題,是分開獨立處理。例:如圖 3-3-8 所示,在xoy平面內(nèi), yo 區(qū)域有勻強(qiáng)電場,方向沿-y 方向,大小為 e,yo 區(qū)域有勻強(qiáng)磁場,方向垂直紙面向里,大小為b,一帶電+q 、質(zhì)量為 m 的粒子從 y 軸上一點 p 由靜止釋放,要求粒子能經(jīng)過x 軸上 q點,q 坐標(biāo)為 (l,o)

10、,試求粒子最初釋放點p 的坐標(biāo)。分析:解決上述問題關(guān)鍵是明確帶電粒子的受力和運(yùn)動特點。從 y 軸上釋放后,只受電場力加速做直線運(yùn)動,從o 點射入磁場,然后做勻速圓周運(yùn)動,半圈后可能恰好擊中q 點,也可能返回電場中,再減速、加速做直線運(yùn)動,然后又返回磁場中,再經(jīng)半圓有可能擊中q 點, 。 那么擊中 q 點應(yīng)滿足lrn 2的條件。2空間區(qū)域同時存在電場和磁場(1) 電場和磁場正交如圖 3-4-9 所示,空間存在著正交的電場和磁場區(qū)域,電場平行于紙面平_ 面向下,大小為 e,磁場垂直于紙面向內(nèi), 磁感強(qiáng)度為 b,一帶電粒子以初速0v進(jìn)入磁場,ev0,bv0,設(shè)粒子電量 +q ,則受力:f洛=bqv0

11、方向向上, f電=qe 方向向下。若滿足:bqv0=qe 0v=e/b 則帶電粒子將受平衡力作用做勻速直線運(yùn)動,這是一個速度選擇器模型。若粒子進(jìn)入正交電磁場速度0vv,則可將v分解為10vvv,粒子的運(yùn)動可看成是0v與1v兩個運(yùn)動的合運(yùn)動,因而粒子受到的洛倫茲力可看成是bqv0與bqv1的合力,而bqv0與電場力 qe 平衡,粒子在電場中所受合力為bqv1,結(jié)果粒子的運(yùn)動是以0v的勻速直線運(yùn)動和以速度1v所做勻速圓周運(yùn)動的合運(yùn)動。例:如圖 3-4-10正交電磁場中,質(zhì)量m、帶電量 +q 粒子由一點 p 靜止釋放,分析它的運(yùn)動。分析:粒子初速為零釋放,它的運(yùn)動軌跡是如圖3-4-10所示的周期性的

12、曲線。初速為零,亦可看成是向右的0v與向左 -0v兩個運(yùn)動的合運(yùn)動,其中0v大小為:0v=e/b b0e圖 3-4-9_ 所以+q 粒子可看成是向右0v勻速直線運(yùn)動和逆時針的勻速圓周運(yùn)動的合運(yùn)動。電場方向上向下最大位移rdm220qbmeqbmvr22qbmedm一個周期向右移動距離l 即 pp1之距為tvl0qbmt2代入,得:22qbmel最低點 q 點速度02vvq(2) 電場和磁場平行如圖 3-4-11 所示的空間區(qū)域有相互平行的電場和磁場e、 b 一帶電 +q 粒子以初速0v射入場區(qū)ev0(或 b)。則帶電粒子在磁場力作用下將做圓周運(yùn)動,電場力作用下向上做加速運(yùn)動,由于向上運(yùn)動速度分

13、量1v始終與 b 平行,故粒子p1p2p3pqm圖 3-4-10eb0圖 3-4-11_ 受洛倫磁力大小恒為bqv0,結(jié)果粒子運(yùn)動是垂直于e(或 b)平面的半徑r=m0v/qb 的勻速圓周運(yùn)動和沿e 方向勻加速直線運(yùn)動的合運(yùn)動,即一個螺距逐漸增大的螺旋運(yùn)動。(3) 電場力、洛倫磁力都與0v方向垂直,粒子做勻速圓周運(yùn)動。例如電子繞原子核做勻速圓周運(yùn)動,電子質(zhì)量 m ,電量為 e,現(xiàn)在垂直軌道平面方向加一勻強(qiáng)磁場,磁感強(qiáng)度大小為b,而電子軌道半徑不變,已知電場力3 倍與洛倫磁力,試確定電子的角速度。在這里電子繞核旋轉(zhuǎn),電場力、洛倫磁力提供運(yùn)動所需向心力,即f電+f洛=rmv /2而 f洛可能指向圓

14、心,也可能沿半徑向外的,因而可能是rmvevbevb/32rmvevbevb/32meb21或meb42典型例題_ 例 1在如圖 3-4-12 所示的直角坐標(biāo)系中,坐標(biāo)原點 o 固定電量為 q 的正點電荷,另有指向 y 軸正方向 (豎直向上方向 ),磁感應(yīng)強(qiáng)度大小為b 的勻強(qiáng)磁場,因而另一個質(zhì)量為 m、電量力為 q 的正點電荷微粒恰好能以y軸上的o點為圓心作勻速圓周運(yùn)動, 其軌道平面 (水平面 )與xoz平面平行,角速度為,試求圓心o的坐標(biāo)值。分析:帶電微粒作勻速圓周運(yùn)動, 可以確定在只有洛倫磁力和庫侖力的情況下除非o與 o 不重合,必須要考慮第三個力即重力。只有這樣,才能使三者的合力保證它繞

15、o在水平面內(nèi)作勻速圓周運(yùn)動。解:設(shè)帶電微粒作勻速圓周運(yùn)動半徑為r,圓心的o縱坐標(biāo)為 y,圓周上一點與坐標(biāo)原點的連線和y 軸夾角為,那么有yrtg帶電粒子受力如圖3-4-13所示,列出動力學(xué)方程為mg=f電cos(1) f洛-f電rm2sin(2) f洛=rbq(3) 將(2)式變換得yxzoqob圖 3-4-12yxzoqobmg電f洛f圖 3-4-13_ f洛-rm2f電sin(4) 將(3)代入(4),且(1)(4)得ryrmrbqmg2消去 r 得2mbqmgy例 2如圖 3-4-14所示,被 1000v 的電勢差加速的電子從電子槍發(fā)射出來,沿直線a方向運(yùn)動,要求電子擊中在a方向、距離槍

16、口 5cm 的靶 m ,對以下兩種情形求出所用的均勻磁場的磁感應(yīng)強(qiáng)度b(1)磁場垂直于由直線a與點 m 所確定的平面。(2)磁場平行于 tm 。解:(1)從幾何考慮得出電子的圓軌道的半徑為(如圖 3-4-15) adrsin2按能量守恒定律,電荷q 通過電勢差 u 后的速度 v為uqmv221即muqv2amdt圖 3-4-14mba2dt圖 3-4-15_ 作用在電荷 q 上的洛倫磁力為qbvf這個力等于向心力qbvrmv2故所需的磁感應(yīng)強(qiáng)度為rqmvb用上面的半徑和速度值,得到qudabm2sin2由于kgm311011.9,cq19106 .1,所以b=0.0037t (2)在磁場施加的

17、力與速度垂直,所以均勻恒定磁場只改變電子速度的方向,不改變速度的大小。我們把電子槍發(fā)射的電子速度分解成兩個直線分量:沿磁場 b 方向的av cos和垂直磁場的avsin,因為avcos在磁場的方向上,磁場對它沒有作用力(圖3-4-16) 。電子經(jīng)過 d/avcos時間后到達(dá)目標(biāo)m 。由于磁場 b和垂直的速度分量avsin,電子在圓軌道上運(yùn)動,由abqvramvsinsin22得到圓半徑為mdtbcoscos圖 3-4-16_ qbamvrsin電子在目標(biāo) m 的方向上也具有速度avcos,結(jié)果是電子繞 b 方向作螺旋線運(yùn)動。電在在 d/avcos時間內(nèi),在繞了 k 圈后擊中目標(biāo)。 k 是一個整

18、數(shù)。圓的周長為qbamvr/sin22由于繞圓周運(yùn)動的速度是avsin,故繞一周的時間是qbmaqbvamv2sinsin2這個值乘上整數(shù) k,應(yīng)等于d/avcoskqbmavd2cos因此,所需的磁感應(yīng)強(qiáng)度為qudakvqdamkbm2cos2cos2k=1 時,電子轉(zhuǎn)一圈后擊中目標(biāo):k=2 時,電子轉(zhuǎn)兩圈后擊中目標(biāo),等等。只要角度a相同,磁場方向相反與否,無關(guān)緊要。用給出的數(shù)據(jù)代入,得b=k 0.0067t 例 3一根邊長為 a、b、c(abc)的矩形截面長棒,如圖 3-4-17 所示,由半導(dǎo)體銻化銦制成,棒中有平行于 a 邊的電流 i 通過, 該棒放在垂直于 c 邊向外的磁場 b 中,電

19、流 i 所產(chǎn)生的磁場忽略不計。該電流的載流子為電子,在abcb圖 3-4-17_ 只有電場存在時,電子在半導(dǎo)體中的平均速度ev,其中為遷移率。(1) 確定棒中所產(chǎn)生上述電流的總電場的大小和方向。(2) 計算夾 c 邊的兩表面上相對兩點之間的電勢差。(3) 如果電流和磁場都是交變的,且分別為tiisin0,tbbsin(0),求(2)中電勢差的直流分量的表達(dá)式。已知數(shù)據(jù):電子遷移率svm /8 .72, 電子密度322/105 .2mn, i=1. 0a ,b=0.1t ,b=1.0cm ,c=1.0mm ,e=1.6 10-19c 分析:這是一個有關(guān)霍爾效應(yīng)的問題,沿電流方向,導(dǎo)體內(nèi)存在電場,

20、又因為霍爾效應(yīng), 使得電子偏轉(zhuǎn), 在垂直電流方向產(chǎn)生電場, 兩側(cè)面間有電勢差的存在解:(1)因為cnevbismnebcv/251所以電場沿a方向分量mvve/2.3/沿 c 方向的分量qeqvbmvvbe/5. 2總電場大小:_ mveee/06.422/電場方向與a邊夾角a,a=38)2.35 .2()(1/1tgeetg(2) 上、下兩表面電勢差vceu3105 .2(3)加上交變電流和交變磁場后,有前面討論的上、下表面電勢差表達(dá)式necibu,可得:)sin(sin00ttnecbinecibu=cos21)2cos(2100tnecbi因此u的直流分量為u直=cos200necbi例

21、 4如圖 3-4-18所示,空間有互相正交的勻強(qiáng)電場e和勻強(qiáng)磁場 b,e沿+y 方向, b 沿+z 方向,一個帶正電+q 、質(zhì)量為 m 的粒子 (設(shè)重力可以忽略 ),從坐標(biāo)圓點 o 開始無初速出發(fā),求粒子坐標(biāo)和時間的函數(shù)關(guān)系,以及粒子的運(yùn)動軌跡。分析:正離子以 o 點起無初速出發(fā),受恒定電場力yxzoeb圖 3-4-18yboxtc),(yx圖 3-4-19 _ 作用沿 +y 方向運(yùn)動,因為速度v 的大小、方向都改變,洛倫茲力僅在xoy 平面上起作用,粒子軌跡一定不會離開xoy 平面且一定以 o 為起點。既然粒子僅受的兩個力中一個是恒力一個是變力,作為解題思路, 利用獨立性與疊加原理, 我們設(shè)想把洛倫茲力分解為兩個分力,使一個分力跟恒電場力抵消, 就把這個實際受力簡化為只受一個洛倫茲力分力的問題。注意此處不是場的分解和抵消, 而是通過先分解速度達(dá)到對力進(jìn)行分解和疊加。我們都知道,符合一定大小要求的彼此正交的勻強(qiáng)復(fù)合電磁場能起速度選擇器作用。受其原理啟發(fā),設(shè)想正離子從o 點起(此處00v)就有一個沿 x 軸正方向、大小為bev0的始終不變的速度,當(dāng)然在o 點同時應(yīng)有一個沿 -x 方向的大小也是be的速度,保證在 o 點00v,則qeqbvc,cqbv沿-y 方向,qe 沿+y方向,彼此抵消,可寫成)()(efvfcb。因任一時刻vvvct,所以)()()(vfvfvfbcbtb

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論