下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、有關(guān)韓國不動產(chǎn)周期研究摘要:本文研究了經(jīng)濟環(huán)境的波動如何影響韓國不 動產(chǎn)周期變化。首先,本文界定了什么是不動產(chǎn)周期。研究 了一些對不動產(chǎn)市場影響最大的經(jīng)濟變量。運用了多元線性 回歸模型和時間序列模型。本文收集了 2000年一月至2013 年一月的數(shù)據(jù)。運用計量分析方法,本文達成了一個結(jié)論, 即上述經(jīng)濟變量與不動產(chǎn)周期之間有著顯著的關(guān)系。關(guān)鍵詞:房地產(chǎn)周期多元回歸經(jīng)濟變量1.introductionkorea, s housing market turned bullish after the government announced a set of measures in early apr
2、il to prop up the nation" s faltering real estate marketfor the first time this year, home transact!ons in korea rose las t month from a year earlier .the ministry of land, infrastructure and transport said friday that provisional figures show that nearly 70-thousand houses saw new owners last
3、month, up more than 8and-ahalf percent from april last year the most notable increase came in the area of seoul where home transactions jumped almost 20 percent to around 30thousand.the property cycle follows a predictable pattern as sure as night follows day. this pattern reveals three distinct pha
4、ses being boom followed by slump followed by recovery before the next boom commences etc the property cycle (unimpeded) will always follows this pattern so a boom cannot precede another boom without first experiencing a slump followed by a recovery before the next boom can arrive2. empirical results
5、this paper is about the analysis of the relationship between korea house purchase price index and four main variables mentioned above therefore two were run in order to understand which model is the best fit model to analyze their relationships over the period january 2000 january 2013 which consist
6、 of 157 observations for each variablemodel 1tablelas can be seen from table 2, this model explains a large proportion of the variance , in fact is equal to 0. 84. but not all the variables of the model are statistically significant since the p-values ofhousing bonds and month rent are greater than
7、the level of significance considered (5%). so we rejectthe null hypothesis we can see that 1% increase in yields of national housing bonds will change +0.0036% housing purchase price index .similarly, 1% growth in monthly rent for housing will change by +0.0026% hppi, which is not so obvious effect.
8、 moreover, an increase of 1 unit in average narrow money will affect positively hppi by +9. 23e-07%.model 2table23. conclusionas can be seen from table 3, this model explains a very high proportion of the variance which is 0.90. moreover, all the variables of the model are highly significant since a
9、ll the p-values are smaller than the level of significance considered (5%) we can see that 1% increase in yields of national housing bonds will change +44 0% housing purchase price index.similarly, 1% growth in monthly rent for housing will change by +349. 1% hppi, which is not so obvious effect. mo
10、reover, an increase of 1 unit in average narrow money will affect positively hppi by +110. 1%.the house purchase index is based on transactions involving conventional and conforming mortgagesonly on singlefamily properties that have been purchased or securitized by fannie mae or freddie mac it is a
11、weighted, repeat-sales index, which means that it measures average price changes in repeat sales or financings on the same properties.yields of national housing bonds , monthly rent for housing and average narrow money are good regressors of the house purchase price indexafter ran two models using t
12、he multi pie regressi on mode 1. taking a log of every regressor and the dependent variable, an equation comes out the best fit model of this problem. using model 2, we can estimate the property cycles considering a bias within. thus, using the model mentioned above , we can get a deeper understending ahout the how the economical variables influence the property market and how the property cycles can be predicted in a econometrical way.reference:1 introduction to e
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建材供應(yīng)安裝合同
- 2024年股權(quán)變更合同模板
- 模具設(shè)計師聘用合同
- 國際廣告公司硬裝施工合同
- 瑜伽館租賃協(xié)議附瑜伽器材清單
- 2025年醫(yī)療器械銷售合同模板匯編3篇
- 地下空間開發(fā)機械臺班施工合同
- 2025版礦山開采權(quán)居間轉(zhuǎn)讓中介合同模板3篇
- 2024年金融衍生品質(zhì)押擔(dān)保及反擔(dān)保合同范本解析3篇
- 2024年豬肉產(chǎn)品買賣標(biāo)準(zhǔn)協(xié)議范本版B版
- 過程開發(fā)流程圖
- 企業(yè)內(nèi)部申請北京工作居住證管理制度
- 《深色名貴硬木家具》學(xué)習(xí)分享
- 最新監(jiān)督學(xué)模擬試卷及答案解析
- DS12C887電子時鐘(附程序)
- 新產(chǎn)品試制流程管理辦法
- 王牌電話交換機說明書
- 列管式換熱器-換熱面積計算
- 25m預(yù)應(yīng)力混凝土簡支T梁橋設(shè)計(共30頁)
- 高等傳熱學(xué)部分答案
- 地球物理學(xué)進展投稿須知
評論
0/150
提交評論