版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第五講 原函數(shù)與不定積分Cauchy積分公式解析函數(shù)的高階導數(shù)& 1. 原函數(shù)與不定積分的概念原函數(shù)與不定積分的概念& 2. 積分計算公式積分計算公式3.4 原函數(shù)與不定積分原函數(shù)與不定積分 1. 原函數(shù)與不定積分的概念原函數(shù)與不定積分的概念 由由2基本定理的推論知:設(shè)基本定理的推論知:設(shè)f (z)在單連通區(qū)在單連通區(qū)域域B內(nèi)解析,則對內(nèi)解析,則對B中任意曲線中任意曲線C, 積分積分c fdz與路與路徑無關(guān),只與起點和終點有關(guān)。徑無關(guān),只與起點和終點有關(guān)。 當起點固定在當起點固定在z0, 終點終點z在在B內(nèi)變動內(nèi)變動,c f (z)dz在在B內(nèi)就定義了一個變上限的單值函數(shù),記作
2、內(nèi)就定義了一個變上限的單值函數(shù),記作 zzdfzF0)1()()( 定理定理 設(shè)設(shè)f (z)在單連通區(qū)域在單連通區(qū)域B內(nèi)解析,則內(nèi)解析,則F(z)在在B內(nèi)解析,且內(nèi)解析,且)()( zfzF 定義定義 若函數(shù)若函數(shù) (z) 在區(qū)域在區(qū)域B內(nèi)的導數(shù)等于內(nèi)的導數(shù)等于f (z) ,即,即 ,稱稱 (z)為為f (z)在在B內(nèi)的原函數(shù)內(nèi)的原函數(shù). )()( zfz zzdfzF0)()( 上面定理表明上面定理表明 是是f (z)的一個的一個原函數(shù)。原函數(shù)。設(shè)設(shè)H (z)與與G(z)是是f (z)的任何兩個原函數(shù),的任何兩個原函數(shù),)(,)()(0)()()( )( )()(為任意常數(shù)為任意常數(shù)cczH
3、zGzfzfzHzGzHzG 這表明:這表明:f (z)的任何兩個原函數(shù)相差一個常數(shù)。的任何兩個原函數(shù)相差一個常數(shù)。( (見第二章見第二章2 2例例3)3) czFdzzf)()(2. 積分計算公式積分計算公式定義定義 設(shè)設(shè)F(z)是是f (z)的一個原函數(shù),稱的一個原函數(shù),稱F(z)+c(c為為任意常數(shù)任意常數(shù))為為f (z)的不定積分,記作的不定積分,記作定理定理 設(shè)設(shè)f (z)在單連通區(qū)域在單連通區(qū)域B內(nèi)解析,內(nèi)解析, F(z)是是f (z)的一個原函數(shù),那么的一個原函數(shù),那么),()()()(100110BzzzFzFdzzfzz A 此公式類似于微積分學中的牛頓萊布尼茲公式此公式類似
4、于微積分學中的牛頓萊布尼茲公式.A 但是要求函數(shù)是解析的但是要求函數(shù)是解析的,比以前的連續(xù)條件要強比以前的連續(xù)條件要強例例1 計算下列積分:計算下列積分:;3,3, 0Re, 31)12iizzCdzzC終終點點為為起起點點為為為為半半圓圓周周:其其中中 解解1) 32|1211,00Re1331222izdzzzzziiC 故故上解析上解析,在在32319312222222ideideiedzziiiC :解解., 1arg1)2的的任任意意曲曲線線終終點點為為起起點點為為內(nèi)內(nèi):為為單單連連通通區(qū)區(qū)域域其其中中zzDCdzzC ).(ln1lnln11ln,1DzzzdzzzzDzC 故故的
5、一個原函數(shù),的一個原函數(shù),是是又又內(nèi)解析內(nèi)解析在在解解2)例例3 計算下列積分:計算下列積分:32|332izdzziiii 11111|11 nnnnnzndzz iiizzzzdzziicossin|cossinsin00 小結(jié)小結(jié) 求積分的方法求積分的方法knkkncxfdzzf 1)(lim)()1( udyvdxivdyudxdzzfc)()2(dttztzfdzzfc)()()()3( 0)(,)()4( cdzzfBCBzf則則單單連連通通解解析析若若)()(,)()(,)()5(1010zfzFzFdzzfBBzfzzzz 則則單單連連通通內(nèi)內(nèi)解解析析在在若若 利用利用Cauc
6、hy-Goursat基本定理在多連通域上基本定理在多連通域上的推廣的推廣,即復合閉路定理即復合閉路定理,導出一個用邊界值表示解導出一個用邊界值表示解析函數(shù)內(nèi)部值的積分公式析函數(shù)內(nèi)部值的積分公式,該公式不僅給出了解析該公式不僅給出了解析函數(shù)的一個積分表達式,從而成為研究解析函數(shù)函數(shù)的一個積分表達式,從而成為研究解析函數(shù)的有力工具,而且提供了計算某些復變函數(shù)沿閉的有力工具,而且提供了計算某些復變函數(shù)沿閉路積分的方法路積分的方法.內(nèi)內(nèi) 容容 簡簡 介介3.5 Cauchy積分公式積分公式0)(.)(,)(,00000一一般般不不解解析析在在則則的的一一條條閉閉曲曲線線內(nèi)內(nèi)圍圍繞繞是是內(nèi)內(nèi)解解析析在在
7、單單連連通通設(shè)設(shè) CdzzzzfzzzzfzDCBzDzfD 100)()(CCdzzzzfdzzzzf的的內(nèi)內(nèi)部部曲曲線線在在內(nèi)內(nèi)部部的的任任意意包包含含由由復復合合閉閉路路定定理理得得CCz 10,分析分析DCz0C1)(21)()()(00000011zifdzzzzfdzzzzfdzzzzfCCC )0(01可可充充分分小小 zzzC)()(,0)(,)(0zfzfzfCzf 時時當當上上的的函函數(shù)數(shù)值值在在的的連連續(xù)續(xù)性性 .,這這就就是是下下面面的的定定理理這這個個猜猜想想是是對對的的DCz0C1猜想積分猜想積分特別取特別取定理定理(Cauchy 積分公式積分公式)內(nèi)內(nèi)任任意意一一
8、點點為為它它的的內(nèi)內(nèi)部部完完全全含含于于曲曲線線內(nèi)內(nèi)任任意意一一條條正正向向簡簡單單閉閉是是內(nèi)內(nèi)處處處處解解析析在在設(shè)設(shè)CzDDCDzf0)3,)2,)()1 Cdzzzzfizf00)(21)( ).(2)(lim:,)()(.000000zifdzzzzfRKdzzzzfdzzzzfCRzzzKKRCK 只只須須證證明明無無關(guān)關(guān)的的半半徑徑與與的的內(nèi)內(nèi)部部設(shè)設(shè)證明證明 )(2)( ,0, 0:000zifdzzzzfRzzK即即要要證證 kkkdzzzzfdzzzzfzifdzzzzf000001)()()(2)( 2)()(00 KKdsRdszzzfzf )()(0, 0)()(lim
9、0000zfzfRzzzfzfzz kdzzzzfzf00)()()(2)(lim000zifdzzzzfKR Cdzzzzfizf00)(21)( 積積分分公公式式仍仍成成立立. .上上連連續(xù)續(xù)及及在在內(nèi)內(nèi)解解析析, ,所所圍圍區(qū)區(qū)域域在在( (1 1) )若若定定理理條條件件改改為為CauchyBBCBCzf,)( A . . , , f f( (z z) ) . .C C積積分分公公式式 ( (2 2) )定定了了內(nèi)內(nèi)部部任任一一處處的的值值也也就就確確則則它它在在區(qū)區(qū)域域確確定定在在區(qū)區(qū)域域邊邊界界上上的的值值一一經(jīng)經(jīng)即即若若值值來來表表示示的的值值可可以以用用它它在在邊邊界界的的內(nèi)內(nèi)
10、部部任任一一點點表表明明函函數(shù)數(shù)在在Cauchy CidzzzzfizfzzC000)(21)(Re:)3( 則則若若A 一個解析函數(shù)在圓心處的值等于它在一個解析函數(shù)在圓心處的值等于它在圓周上的平均值圓周上的平均值. . 200Re)Re(21dRiezfiiii 200)Re(21dzfi 443211)2sin21)1zzdzzzdzzzi)(求求: 0sinsin21)104 zzzdzzzi iiidzzzdzdzzzzfzzz 62212321)3211()221)(444 及及例例1解解.1122線線在在內(nèi)內(nèi)的的任任意意簡簡單單正正向向曲曲為為包包含含求求 zCdzzzzC例例2
11、21222121212CCCdzzzzdzzzzdzzzz解解CC1C21xyo 21112112CCdzzzzdzzzziizzizzzzC 4 212211210 積積分分公公式式由由).1( ,173)(, 3222ifdzzfyxCC 求求表圓周表圓周設(shè)設(shè) 例例3解解 )613(27)1(62)1( 3)76(230)( 3)173(230173)(173222 iiiifzzizzfzzzizdzzfzzC 故故又又在全平面上處處解析,在全平面上處處解析,內(nèi)內(nèi) 容容 簡簡 介介 本節(jié)研究解析函數(shù)的無窮次可導性,并導本節(jié)研究解析函數(shù)的無窮次可導性,并導出高階導數(shù)計算公式。研究表明:一個
12、解析函出高階導數(shù)計算公式。研究表明:一個解析函數(shù)不僅有一階導數(shù),而且有各階導數(shù),它的值數(shù)不僅有一階導數(shù),而且有各階導數(shù),它的值也可用函數(shù)在邊界上的值通過積分來表示。這也可用函數(shù)在邊界上的值通過積分來表示。這一點與實變函數(shù)有本質(zhì)區(qū)別。一點與實變函數(shù)有本質(zhì)區(qū)別。6 解析函數(shù)的高階導數(shù)解析函數(shù)的高階導數(shù)求求導導得得兩兩邊邊在在積積分分號號下下對對對對積積分分公公式式0000)()(21)(zDzdzzzzfizfC Cdzzzzfizf200)()(21)( Cdzzzzfizf300)()(2!2)( ), 2 , 1()()(2!)(100)( ndzzzzfinzfCnn 形式上,形式上,以下
13、將對這些公式的正確性加以證明。以下將對這些公式的正確性加以證明。.,)(), 2 , 1()()(2!)(,)(000)(1DzDzfCndzzzzfinzfnzfCnn 而而且且它它的的內(nèi)內(nèi)部部任任意意正正向向簡簡單單閉閉曲曲線線的的內(nèi)內(nèi)圍圍繞繞的的解解析析區(qū)區(qū)域域為為在在其其中中階階導導數(shù)數(shù)為為它它的的的的導導數(shù)數(shù)仍仍為為解解析析函函數(shù)數(shù)解解析析函函數(shù)數(shù) 定理定理證明證明 用數(shù)學歸納法和導數(shù)定義。用數(shù)學歸納法和導數(shù)定義。zzfzzfzfDznz )()(lim)( .100000的的情情形形先先證證 Cdzzzzzfizzf 00)(21)( Cdzzzzfizf00)(21)( 由由柯柯
14、西西積積分分公公式式 CCCdzzzzzzzfidzzzzfdzzzzzfzizzfzzf)()(21)()(21)()(000000 令為令為I CCdzzzzzzzzfidzzzzfi20020)()(21)()(21 CCdszzzzzzfzdzzzzzzzzfI200200)(21)()(21 則則有有取取則則上上連連續(xù)續(xù)在在上上解解析析,在在,21min,)(,)()(0dzzzdMzfMCzfCzfCz dzzzdzzzzzzdzzdzz21,211,00000 )(*)()(21)()(lim)( 200000 Czdzzzzfizzfzzfzf 從從而而有有顯顯然然,的的長長度
15、度),0lim(03 ICLdMLzIz .2)()(的情形的情形的方法可證的方法可證式及推導式及推導再利用再利用 n Czdzzzzfizzfzzfzf300000)()(2!2)( )( lim)( 依次類推,用數(shù)學歸納法可得依次類推,用數(shù)學歸納法可得 Cnndzzzzfinzf100)()()(2!)( .,)()(無無窮窮次次可可導導內(nèi)內(nèi)解解析析即即在在具具有有各各階階導導數(shù)數(shù)內(nèi)內(nèi)在在內(nèi)內(nèi)解解析析平平面面上上在在定定理理表表明明 DDzfDzzf一個解析函數(shù)的導數(shù)仍為解析函數(shù)。一個解析函數(shù)的導數(shù)仍為解析函數(shù)。)(!2)()(:0)(10zfnidzzzzfnCn 可可計計算算積積分分用用途途 CzCdzzedzzzrzC225)1()2)1(cos)11: 求求下下列列積積分分值值例例1iizidzzzzzC12)(! 42)(cos!152)1(coscos)1541)4(5 )(在全平面處處解析在全平面處處解析解解的的內(nèi)內(nèi)部部不不相相交交且且在在取取處處不不解解析析在在CCCizCizCizizez21221122,:.)()2 21222222)()()1(CzCzCzdzzied
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度安全生產(chǎn)月宣傳品采購與分發(fā)合同
- 2024年度建設(shè)施工合同工程質(zhì)量與工程款支付規(guī)定
- 2024年企業(yè)環(huán)保設(shè)施建設(shè)和運營合同
- 04版離婚合同:三個孩子的監(jiān)護權(quán)、財產(chǎn)分配及贍養(yǎng)費
- 2024聘用駕駛員合同書
- 2024年建筑基礎(chǔ)土石方作業(yè)合同
- 安利心態(tài)課件教學課件
- 催收員試用期轉(zhuǎn)正工作總結(jié)(6篇)
- 2024年度ABC電子科技有限公司手機代理銷售合同
- 2024年大型物流中心建設(shè)與運營合同
- 學?!爸腥A古詩詞大賽”備考試題庫(300題各題型)
- 《運動生理學》第三版考試復習題庫(匯總版)
- 道德與法治-《公民身份從何而來》觀課報告
- 市政工程資料整理與歸檔匯編
- 初中生物說題
- 《一次函數(shù)》單元作業(yè)設(shè)計
- 網(wǎng)絡(luò)營銷試卷
- 斯德哥爾摩生態(tài)城市空間規(guī)劃的路徑、特征與啟示
- C羅英文介紹課件
- 反假幣培訓課件
- 教學設(shè)計 平面鏡成像教學設(shè)計 市賽一等獎
評論
0/150
提交評論