對鋯石地球化學(xué)特征及地質(zhì)應(yīng)用研究_第1頁
對鋯石地球化學(xué)特征及地質(zhì)應(yīng)用研究_第2頁
對鋯石地球化學(xué)特征及地質(zhì)應(yīng)用研究_第3頁
對鋯石地球化學(xué)特征及地質(zhì)應(yīng)用研究_第4頁
對鋯石地球化學(xué)特征及地質(zhì)應(yīng)用研究_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、對鋯石地球化學(xué)特征及地質(zhì)應(yīng)用研究    摘要:介紹并對比了用于鋯石等副礦物測試的離子探針、激光探針、電子探針、質(zhì)子探針等幾種微區(qū)原位測試技術(shù)各自的特點(diǎn)。鋯石U-Pb 定年實(shí)現(xiàn)了對同一鋯石顆粒內(nèi)部不同成因的鋯石域進(jìn)行原位年齡的分析,給出了有關(guān)寄主巖石的源巖、地質(zhì)演化歷史等重要信息,為地質(zhì)過程的精細(xì)年齡框架的建立提供了有效的途徑。鋯石微量元素、同位素特征是譯解巖石來源和成因的指示器。鋯石Hf 同位素已成功地用于地球早期歷史、巖漿來源、殼幔相互作用、區(qū)域大陸地殼增長的研究等;鋯石氧同位素組成能有效地約束殼幔相互作用和示蹤巖漿來源等。 關(guān)鍵詞:鋯石;年代學(xué);地球

2、化學(xué)特征;地質(zhì)應(yīng)用 隨著能夠顯示礦物內(nèi)部復(fù)雜化學(xué)分區(qū)的成像技術(shù)和高分辨率的微區(qū)原位測試技術(shù)的發(fā)展和廣泛應(yīng)用,研究顆粒鋯石等副礦物微區(qū)的化學(xué)成分、年齡、同位素組成及其地質(zhì)應(yīng)用等已成為國際地質(zhì)學(xué)界研究的熱點(diǎn)1 。鋯石U2Pb 法是目前應(yīng)用最廣泛的同位素地質(zhì)年代學(xué)方法,鋯石的化學(xué)成分、Hf 和O 同位素組成廣泛應(yīng)用于巖石成因、殼幔相互作用、區(qū)域地殼演化的研究等,對地球上古老鋯石的化學(xué)成分和同位素的研究是追朔地球早期歷史的有效工具。筆者著重綜述鋯石的化學(xué)成分、同位素組成特征及其在地質(zhì)學(xué)中的應(yīng)用。 1 微區(qū)原位測試技術(shù) 鋯石等副礦物在地質(zhì)學(xué)中的廣泛應(yīng)用與近年來原位分析測試技術(shù)的快速發(fā)展密不可分。代寫論文

3、目前已廣泛應(yīng)用的微區(qū)原位測試技術(shù)主要有離子探針、激光探針和電子探針等。 1. 1 離子探針 離子探針( sensitive high resolution ion micro-probe ,簡稱SHRIMP) 可用于礦物稀土元素、同位素的微區(qū)原位測試。在目前所有的微區(qū)原位測試技術(shù)中,SHRIMP 的靈敏度、空間分辨率最高(對U 、Th 含量較高的鋯石測年,束斑直徑可達(dá)到8m) ,且對樣品破壞小(束斑直徑1050m ,剝蝕深度5m) 2-3 ,是最先進(jìn)、精確度最高的微區(qū)原位測年方法。其不足之處是儀器成本高,測試費(fèi)用昂貴,測試時(shí)間較長(每測點(diǎn)約需20 min) 。 2000 年,Cameca Na

4、noSIMS 50 二次離子質(zhì)譜開始用于對顆粒大小為12m 的副礦物進(jìn)行U-Th-Pb 年代學(xué)研究。代寫畢業(yè)論文 NanoSIMS 對粒度極細(xì)小的副礦物進(jìn)行定年要以降低精度為代價(jià),且用于U-Th-Pb 定年還沒有進(jìn)行試驗(yàn),還未完全估算出其準(zhǔn)確度和分析精度,有可能在西澳大利亞大學(xué)獲得初步的成功2 ,4 。 1. 2 激光探針 激光剝蝕微探針2感應(yīng)耦合等離子體質(zhì)譜儀(la-ser ablation micro2probe2inductively coupled plas-ma mass spect romet ry ,簡稱LAM2ICPMS) ,即激光探針技術(shù)可實(shí)現(xiàn)對固體樣品微區(qū)點(diǎn)常量元素、微量元

5、素和同位素成分的原位測定 5 。近年研制成功的多接收等離子質(zhì)譜(MC-ICPMS) 可同時(shí)測定同位素比值,該儀器現(xiàn)今已經(jīng)成為Hf 同位素測定的常規(guī)儀器6 。近年來激光探針技術(shù)在原位測定含U 和含Th 副礦物的U-Pb 、Pb-Pb 年齡或Th-Pb 年齡方面進(jìn)展極快,在一定的條件下可獲得與SHRIMP 技術(shù)相媲美的準(zhǔn)確度和精確度,且經(jīng)濟(jì)、快速(每個(gè)測點(diǎn)費(fèi)時(shí) 4 min ,可以直接在電子探針片內(nèi)進(jìn)行分析5 ,7-8 ) ;但與SHRIMP 相比,激光探針要求樣品數(shù)量較大,對樣品破壞大(分析束斑大小一般為3060m ,剝蝕深度為1020m) ,其空間分辨率和分析精度一般低于SIMS、SHRIMP

6、1 ,9210 。 1. 3 電子探針、質(zhì)子探針、X 射線熒光探針 電子探針(elect ron probe X-ray microanalysis ,簡稱EPMA ) 、質(zhì)子探針( protoninduced X-ray emission micro-p robe ,簡稱PIXE) 和X 射線熒光探針(X-ray fluorescence p robe ,簡稱XRF) 均屬微區(qū)化學(xué)測年技術(shù)。其優(yōu)點(diǎn)是可以直接在巖石探針片上進(jìn)行測定,不破壞樣品,保留了巖石的原始結(jié)構(gòu),樣品制備方便,便于實(shí)現(xiàn)原地原位分析,與同位素定年相比,價(jià)格低廉,分析快速;其缺點(diǎn)是不能估計(jì)平行的U-Pb 衰變體系的諧和性1 ,1

7、1 ,且由于化學(xué)定年不需進(jìn)行普通鉛的校正,容易導(dǎo)致過高估計(jì)年輕獨(dú)居石、鋯石等礦物的年齡12 。 電子探針測定鋯石的Th-U-全Pb 化學(xué)等時(shí)線年齡方法(chemical Th2U2total Pb isochron meth-od ,簡稱CHIME) 的優(yōu)點(diǎn)是空間分辨率高達(dá)15m ,可進(jìn)行年齡填圖5 ,8 ,可進(jìn)行鋯石和獨(dú)居石、磷釔礦、斜鋯石等富U 或富Th 副礦物年齡的測定11 ,13215 ;缺點(diǎn)是因?qū)b 的檢出限較低而導(dǎo)致測年精度偏低,不能用于年齡小于100 Ma 的獨(dú)居石等礦物的定年。 質(zhì)子探針是繼電子探針之后發(fā)展起來的、一種新的微束分析技術(shù),能有效地進(jìn)行微區(qū)微量元素、痕量元素的分析

8、,近年來用于測定獨(dú)居石的U-Th-Pb年齡,其分析原理與電子探針相似。對EPMA 無能為力的、小于100 Ma 的獨(dú)居石年齡的測定, PIXE具有明顯的優(yōu)勢 5 ,8 。 此外,近年逐步改進(jìn)的X 射線熒光探針在測定年輕獨(dú)居石年齡方面具有較大的優(yōu)勢。在分析束斑為4060m、使用單頻X 射線的條件下, Pb 的檢出限可達(dá)10 ×10 - 6 ,對于年齡為數(shù)十百萬年甚至是15 Ma 的年輕獨(dú)居石,可獲得與ICP-MS 同位素定年相近的結(jié)果,XRF 化學(xué)定年的精度和分辨率大大高于EMPA ,但在相同空間分辨率的情況下,XRF化學(xué)年齡與同位素年齡測定的比較有待進(jìn)一步研究。其另一優(yōu)勢是儀器成本較

9、低,裝置簡單,易于組建和操作。但由于XRF 的空間分辨率較低,因此不適于分析內(nèi)部具有不均一年齡分區(qū)的、粒度小的獨(dú)居石 12 ,16 。 盡管微區(qū)原位測試技術(shù)給出了重要的、空間上可分辨的年齡信息,但在精確度、準(zhǔn)確度方面仍無法與傳統(tǒng)的同位素稀釋熱電質(zhì)譜技術(shù)( ID-TIMS) 相比。代寫碩士論文 在副礦物不存在繼承性(如對幔源巖石、隕石等中的鋯石進(jìn)行定年) 的情況下, ID-TIMS 仍得到廣泛使用。 2 鋯石U-Th-Pb 同位素年代學(xué) 2. 1 鋯石U-Th-Pb 同位素體系特征及定年進(jìn)展 由于鋯石具有物理、化學(xué)性質(zhì)穩(wěn)定,普通鉛含量低,富含U 、Th w (U) 、w ( Th) 可高達(dá)1 %

10、以上 ,離子擴(kuò)散速率很低17 ,封閉溫度高等特點(diǎn),因此鋯石已成為U-Pb 法定年的最理想對象1 。 雖然鋯石通常能較好地保持同位素體系的封閉,但在某些變質(zhì)作用或無明顯地質(zhì)作用過程中亦可能丟失放射性成因鉛,使得其t (206 Pb/ 238 U) 和t (207 Pb/ 235 U) 兩組年齡不一致。造成鋯石中鉛丟失的一個(gè)最主要原因是鋯石的蛻晶化作用;此外,部分重結(jié)晶作用也是導(dǎo)致鋯石年齡不一致的又一原因18-19 。 鋯石內(nèi)部經(jīng)常出現(xiàn)復(fù)雜的分區(qū),每一區(qū)域可能都記錄了鋯石所經(jīng)歷的結(jié)晶、變質(zhì)、熱液蝕變等復(fù)雜的歷史過程20-21 。因此,在微區(qū)分析前,詳細(xì)研究鋯石的形貌和內(nèi)部結(jié)構(gòu)對解釋鋯石的U2Pb

11、年齡、微區(qū)化學(xué)成分和同位素組成的成因至關(guān)重要。只有對同一樣品直接進(jìn)行結(jié)構(gòu)和年齡的同步研究,才能得到有地質(zhì)意義的年齡。利用HF 酸蝕刻圖像、陰極發(fā)光圖像(cat hodo luminescence ,簡稱CL) 和背散射電子圖像( back2scat tered elect ron image , 簡稱BSE) 技術(shù)可觀察鋯石內(nèi)部復(fù)雜的結(jié)構(gòu)20 。 近年來,鋯石年代學(xué)研究實(shí)現(xiàn)了對同一鋯石顆粒內(nèi)部不同成因的鋯石域進(jìn)行微區(qū)原位年齡分析,提供了礦物內(nèi)部不同區(qū)域的形成時(shí)間,使人們能夠獲得一致的、清楚的、容易解釋的地質(zhì)年齡,目前已經(jīng)能夠?qū)δ切┯涗浽阡喪瘍?nèi)部的巖漿結(jié)晶作用、變質(zhì)作用、熱液交代和退變質(zhì)作用等多

12、期地質(zhì)事件進(jìn)行年齡測定,從而建立起地質(zhì)過程的精細(xì)年齡框架。 例如,變質(zhì)巖中鋯石的結(jié)構(gòu)通常非常復(fù)雜,對具有復(fù)雜結(jié)構(gòu)鋯石的定年可以得到鋯石不同結(jié)構(gòu)區(qū)域的多組年齡,這些年齡可能分別對應(yīng)于鋯石寄主巖石的原巖時(shí)代、變質(zhì)事件時(shí)間(一期或多期) 及源區(qū)殘留鋯石的年齡等。對這些樣品中鋯石的多組年齡如何進(jìn)行合理的地質(zhì)解釋,是目前鋯石U-Pb 年代學(xué)研究的重點(diǎn)和難點(diǎn)21 ,而明確不同成因域的鋯石與特定p-T 條件下生長的、不同世代礦物組合的產(chǎn)狀關(guān)系是合理解釋的關(guān)鍵。吳元保等21 的研究表明,鋯石的顯微結(jié)構(gòu)、微量元素特征和礦物包裹體成分等可以對鋯石的形成環(huán)境進(jìn)行限定,從而為鋯石U-Pb 年齡的合理解釋提供有效的制約

13、。目前對變質(zhì)巖中鋯石、獨(dú)居石等礦物定年的主要方法是先從巖石中分選出測年用的單礦物,然后用環(huán)氧樹脂固定并拋光制成靶, 再進(jìn)行微形貌觀察和年齡的原位測定。但這樣往往破壞了待測礦物與特定地質(zhì)事件的原始結(jié)構(gòu)關(guān)系。為此,陳能松等8 提出了原地原位測年的工作思路,即利用各種微區(qū)原位測試技術(shù)直接測定巖石薄片中與特定溫壓條件下生長的不同世代礦物組合、產(chǎn)狀關(guān)系明確的鋯石和獨(dú)居石等富U-Th-Pb 的副礦物在不同成因域的年齡,從而將精確的年齡結(jié)果與特定的變質(zhì)事件或變質(zhì)反應(yīng)聯(lián)系起來。 2. 2 鋯石微區(qū)定年的示蹤作用 火成巖中耐熔的繼承鋯石可以保持U-Pb 同位素體系和稀土元素(REE) 的封閉,從而包含了關(guān)于深部

14、地殼和花崗巖源區(qū)的重要信息22-23 ,可用于花崗巖物源和基底組成的示蹤。代寫職稱論文筆者在研究江西九嶺花崗巖中的鋯石時(shí),發(fā)現(xiàn)部分鋯石邊部發(fā)育典型的巖漿成因的環(huán)帶,其中心具有熔融殘余核(圖1) 。SHRIMP 分析表明,這2 部分的年齡組成有明顯的差別,環(huán)帶部分的年齡約為830 Ma ,而核部的年齡集中在1 4001 900 Ma ,核部年齡可能代表花崗巖源巖的鋯石組成年齡。 dele Rosa 等23 通過研究葡萄牙境內(nèi)歐洲Variscan 造山帶縫合線兩側(cè)的花崗閃長巖、星云巖中繼承鋯石的稀土元素和U2Pb 同位素特征,發(fā)現(xiàn)這2 組鋯石無論是在年齡譜上還是在REE 組成上,均存在明顯差異,說

15、明它們來源不同,即這2 個(gè)地區(qū)深部地殼的物質(zhì)組成(基底) 不同。 近年來,隨著LA-ICP-MS 技術(shù)的發(fā)展,沉積巖中碎屑鋯石的年齡譜分析廣泛應(yīng)用于沉積巖源區(qū)物質(zhì)成分組成和地殼演化的研究24-27 。通過對比盆地沉積物中鋯石的U-Pb 年齡譜和盆地毗鄰山脈出露巖體的年齡,可以了解某一沉積時(shí)期沉積物源區(qū)的多樣性及盆地不同時(shí)期物源性質(zhì)的變化特征。該方法同時(shí)還可估算地層的最大沉積年齡。 3 鋯石化學(xué)成分特征及其在巖石成因中的應(yīng)用 通常,在組成鋯石的總氧化物中, w ( ZrO2 ) 占67. 2 %、w ( SiO2 ) 占32. 8 % , w ( HfO2 ) 占0. 5 %2. 0 % ,P、

16、Th 、U 、Y、REE 常以微量組分的形式出現(xiàn)。由于Y、Th 、U 、Nb 、Ta 等離子半徑大、價(jià)態(tài)高,代寫留學(xué)生論文使得它們不能包含在許多硅酸鹽造巖礦物中,趨向于在殘余熔體中富集,而鋯石的晶體結(jié)構(gòu)可廣泛容納不同比例的稀土元素,因此鋯石成為巖石中U 、Th 、Hf 、REE 的主要寄主礦物1 ,28231 。稀土元素和一些微量元素是限定源巖性質(zhì)和形成過程最重要的指示劑之一,鋯石中的離子擴(kuò)散慢,因此鋯石中的稀土元素分析結(jié)果可為它們的形成過程提供重要的地球化學(xué)信息。 3. 1 鋯石中的w ( Th) 、w (U) 及w ( Th) / w (U) 比值 大量的研究21 ,28 表明,不同成因的

17、鋯石有不同的w ( Th) 、w (U) 及w ( Th) / w (U) 比值:巖漿鋯石的w ( Th) 、w (U) 較高, w ( Th) / w (U) 比值較大(一般大于014) ;變質(zhì)鋯石的w ( Th) 、w (U) 低, w ( Th) /w (U) 比值小(一般小于011) 。但也有例外情況,有些巖漿鋯石就具有較低的w ( Th) / w (U) 比值(可以小于0. 1) ,部分碳酸巖樣品中的巖漿鋯石則具有異常高的w ( Th) / w (U) 比值(可以高達(dá)10 000) 21 ,28 ,所以,僅憑鋯石的w ( Th) / w (U) 比值有時(shí)并不能有效地鑒別巖漿鋯石和變質(zhì)

18、鋯石。 3. 2 鋯石微量元素、稀土元素特征及其應(yīng)用 鋯石的稀土元素特征研究主要用于判斷其寄主巖石的成因類型,但巖漿鋯石的微量元素特征是否能判斷寄主巖石的類型目前還存在較大的爭議21 。而一些變質(zhì)巖(如麻粒巖) 中的變質(zhì)鋯石可以具有較高的w ( Th) / w (U) 比值21 。 Hoskin 等 29-30 認(rèn)為,雖然幔源巖石中的鋯石與殼源巖石中的鋯石在REE 含量及稀土配分模式上具有明顯差別,但并未發(fā)現(xiàn)不同成因的殼源巖石中鋯石的REE 特征存在系統(tǒng)差異,它們具有非常類似的REE 含量和稀土配分模式, 目前對殼源鋯石REE 組成如此相似的原因并不清楚。 Belousova 等28 ,31

19、的研究結(jié)果表明,鋯石中的稀土元素豐度對源巖的類型和結(jié)晶條件很敏感。從超基性巖基性巖花崗巖,鋯石中的稀土元素豐度總體升高。鋯石的w (REE) 在金伯利巖中一般低于50 ×10 - 6 ,在碳酸鹽巖和煌斑巖中可達(dá)600 ×10 - 6 700 ×10 - 6 ,在基性巖中可達(dá)2 000 ×10 - 6 ,代寫英語論文 而在花崗質(zhì)巖石和偉晶巖中可高達(dá)百分之幾。這種趨勢反映了巖漿的分異程度。 正長巖中鋯石具有正Ce 異常、負(fù)Eu 異常和中等富集重稀土元素( HREE) ;花崗質(zhì)巖石中鋯石明顯負(fù)Eu 異常、無Ce 異常,無明顯HREE 富集;碳酸巖中鋯石無明顯的

20、Ce 、Eu 異常,輕、重稀土元素分異程度變化較大;鎂鐵質(zhì)火山巖中鋯石的輕、重稀土元素分異明顯;金伯利巖中鋯石無明顯的Eu 、Ce 異常,輕、重稀土元素分異程度不明顯28 ,31 (圖2) 。大部分地球巖石中鋯石的HREE 比L REE 相對富集,顯示明顯的正Ce 異常、小的負(fù)Eu 異常;而隕石、月巖等地外巖石中鋯石則具強(qiáng)的Eu 虧損、無Ce 異常28 。Belousova 等28 建立了通過鋯石的微量元素對變化圖解和微量元素的質(zhì)量分?jǐn)?shù)來判別不同類型的巖漿鋯石的統(tǒng)計(jì)分析樹形圖解。 與巖漿鋯石相比,變質(zhì)鋯石HREE 的富集程度相對LREE 的變化較大。巖漿鋯石具有明顯的負(fù)Eu 異常,形成于有熔體

21、出現(xiàn)的變質(zhì)鋯石具有與巖漿鋯石類似的特征:富U 、Y、Hf 、P ,REE 配分模式陡,正Ce 異常、負(fù)Eu 異常。但變質(zhì)鋯石的w ( Th) /w (U) 比值低( 0. 1) ,這是區(qū)別于巖漿鋯石的惟一的化學(xué)特征。在變質(zhì)過程中,鋯石是否發(fā)生了重結(jié)晶以及結(jié)晶過程中是否有流體或熔體的參與,都會顯著影響鋯石稀土元素組分的變化32 。 變質(zhì)增生鋯石的稀土元素特征除與各個(gè)稀土元素進(jìn)入鋯石晶格的能力大小有關(guān)外,還與鋯石同時(shí)形成的礦物種類有關(guān)(如石榴石、長石、金紅石等) ,這些礦物的存在與否對變質(zhì)作用的條件(如榴輝巖相、麻粒巖相和角閃巖相等) 有重要的指示意義,鋯石的REE 組成可反映鋯石母巖的變化,至少

22、在某些情況下反映了鋯石與其他礦物如石榴石(稀土元素總量低、虧損HREE) 32-35 或長石( 負(fù)Eu 異常) 32 ,36-37 、金紅石34 的共生情況。 變質(zhì)增生鋯石的微量元素特征不僅受與鋯石同時(shí)形成的礦物種類的影響,而且還與其形成時(shí)環(huán)境是否封閉有關(guān)。在“封閉”的榴輝巖相的體系中,REE 的供應(yīng)有限,由于石榴石是榴輝巖中富集HREE 的礦物,固相線下石榴石的形成會使熔體虧損HREE;而在開放環(huán)境中,石榴石的形成并不能引起局部環(huán)境HREE 質(zhì)量分?jǐn)?shù)的改變,這種條件下與石榴石共生的鋯石就不會出現(xiàn)HREE 的相對虧損。因此, HREE的相對虧損與否并不能直接用來判別變質(zhì)鋯石是否與富集HREE

23、的石榴石同時(shí)形成21 。 鋯石微區(qū)的稀土元素分析與微區(qū)定年、鋯石中的包裹體研究相結(jié)合能夠較好地限定鋯石的形成環(huán)境,可以將鋯石的形成與變質(zhì)條件聯(lián)系起來,從而將變質(zhì)過程中的p-T-t 有效地聯(lián)系在一起,在造山帶研究中用于追溯超高壓變質(zhì)巖的形成過程 21 ,36-38 。 4 鋯石同位素的地質(zhì)應(yīng)用 4. 1 鋯石的Lu2Hf 同位素 Lu 與Hf 均為難熔的中等2強(qiáng)不相容性親石元素,這與Sm-Nd 體系類似,因此Hf 同位素示蹤的基本原理與Nd 同位素相同。 Hf 與Zr 呈類質(zhì)同象存在于鋯石的礦物晶格中,相對其他礦物,鋯石中w ( Hf ) 高 w ( HfO2 ) 1 % ,這為獲取高精度的Hf

24、 同位素比值數(shù)據(jù)提供了保障;同時(shí)其w (Lu) / w ( Hf ) 值極低 w (176 Lu) /w (177 Hf) n 0. 01 39-40 ,由176Lu 衰變形成的176 Hf 比例非常低,對鋯石形成后的Hf 同位素組成的影響甚微,這樣鋯石的Hf 同位素組成基本上代表了鋯石結(jié)晶時(shí)的初始Hf 同位素組成。加上鋯石化學(xué)性質(zhì)穩(wěn)定,具有很高的Hf 同位素封閉溫度,即使經(jīng)歷了麻粒巖相等高級變質(zhì)作用也能很好地保留初始Hf 同位素組成,因此鋯石中的Hf 非常適合于巖石成因的Hf 同位素研究41-42 。Lu-Hf 同位素體系本身所具有的高于Sm-Nd同位素體系的封閉溫度及鋯石特有的抗風(fēng)化能力,

25、使得鋯石成為研究太古宙早期地殼的理想研究對象。 近年來,一些作者應(yīng)用鋯石的Hf 同位素原位測試成功地解決了太古宙早期是否存在超虧損地幔的問題。在太古宙的Sm-Nd 同位素研究中,部分太古宙早期巖石(年齡約為3. 8 Ga) 具有較高的(Nd)值(Nd) + 4 43-44 ,似乎顯示當(dāng)時(shí)地球發(fā)生過極大規(guī)模的殼幔分異作用,并出現(xiàn)地幔的極度虧損。通過鋯石Lu2Hf 研究發(fā)現(xiàn),高(Nd) t 值的樣品并未顯示高的( Hf) t 值,同一時(shí)期不同地質(zhì)單元的太古宙巖石中的鋯石具有十分相近的( Hf ) t 值,這表明由Nd 同位素確定的極度虧損地幔,是由于Sm-Nd 同位素體系開放造成的假象 45-48

26、 。 沉積巖中碎屑鋯石的REE 特征及其原位的U-Pb 年齡、Hf 同位素組成測定已被作為研究沉積物母巖以及地殼演化的強(qiáng)有力工具25 ,42 ,49 。 在巖石由多種組分構(gòu)成、而其Nd 同位素?cái)?shù)據(jù)只有一個(gè)的情況下,可以通過多組鋯石的Hf 同位素來認(rèn)識其演化過程。 鋯石微區(qū)年齡、稀土元素的測定與Hf 同位素研究相結(jié)合,是示蹤殼幔相互作用、研究區(qū)域大陸地殼增長的有力工具 50-51 。如鄭建平等51 對玄武巖中麻粒巖捕虜體的鋯石進(jìn)行了年齡、REE、Hf 同位素分析,探討了早元古代華北克拉通的形成和殼幔相互作用。 由于性質(zhì)不同的巖石的Hf 同位素組成可能存在一定的差別,物理?xiàng)l件或結(jié)晶途徑也可能改變礦

27、物的化學(xué)成分,但不會影響Hf 同位素組成。如果鋯石在生長過程中不僅存在化學(xué)成分和晶體形貌上的變化,而且還伴隨了Hf 同位素組成的變化,則說明有來源明顯不同的巖漿發(fā)生了化學(xué)混合。這為研究巖漿作用過程中不同組分的混入提供了重要途徑。代寫工作總結(jié) 對于一個(gè)由多種組分構(gòu)成的巖石樣品,巖漿巖中形態(tài)不同的鋯石晶體及同一鋯石內(nèi)部不同環(huán)帶均記錄了不同組分的巖漿相互作用的過程,因此通過多組鋯石和同一鋯石顆粒內(nèi)不同環(huán)帶的Hf 同位素研究,可追蹤巖體的結(jié)晶歷史,獲得巖漿演化的信息。 Griffin 等52 通過對華南平潭和桐廬I 型花崗巖體中鋯石的Hf 同位素研究,發(fā)現(xiàn)不同生長階段的鋯石的Hf 同位素組成不同,且它

28、們的微量元素組成也存在差異53 ,揭示這2 個(gè)I 型花崗巖體在形成過程中有多于2 種不同來源的巖漿發(fā)生了混染。雖然化學(xué)混合(mixing) 使巖體中不同類型的巖石具有類似的Sr 、Nd 同位素組成,但鋯石卻像“錄音機(jī)”一樣記錄了不同巖漿產(chǎn)生和相互作用的細(xì)節(jié)。 汪相等54 利用鋯石中的Hf 同位素探討了幔源巖漿對過鋁花崗巖成因的制約。華南過鋁花崗巖在巖相學(xué)和巖石化學(xué)上充分顯示了殼源的基本特征,且在這些花崗巖體中很少見到地幔巖漿侵入形成的淬冷包體或基性巖脈,故它們的成因無法與地?;顒?dòng)聯(lián)系起來。鋯石顆粒內(nèi)部的多階段生長的環(huán)帶,記錄了巖漿形成和冷凝過程中的物理化學(xué)信息。因此對顆粒內(nèi)部不同環(huán)帶的同位素原

29、位分析可以直接揭示中下地殼花崗質(zhì)巖漿形成過程的復(fù)雜性和巖漿性質(zhì)的演化,這些現(xiàn)象很難在野外觀察到,通過全巖同位素分析也難以檢測出來,而鋯石中的Hf 同位素特征卻可以有效地揭示幔源巖漿對花崗巖形成的貢獻(xiàn)。 由于鋯石中的Hf 很難與巖石外部的Hf 發(fā)生交換,因此,除Hf 同位素組成本身可以作為地球化學(xué)的示蹤劑外,還可通過對鋯石Hf 同位素的研究來解譯導(dǎo)致鋯石U2Pb 年齡不一致的原因。對于重結(jié)晶的鋯石,如果體系在鋯石結(jié)晶前后在成分上未發(fā)生明顯變化,則其鋯石的同位素組成符合單體系的線性演化規(guī)律;但如果有外來Hf 的加入,則會形成年輕的、Hf 同位素組成明顯不同的增生鋯石。基于同樣的原因,鋯石的Hf 同

30、位素組成能夠指示鋯石的U-Pb 體系是否、何時(shí)發(fā)生了重置,因而在解釋下地殼、地幔來源的高級變質(zhì)巖的鋯石年齡時(shí)幫助很大55 。 4. 2 鋯石的氧同位素 由于地殼物質(zhì)與地幔物質(zhì)的氧同位素組成存在差異,因此氧同位素可以很好地示蹤殼幔的相互作用。此外,氧同位素是一種敏感的、示蹤地殼中的流體和固體相互作用的、依賴于溫度的示蹤劑,巖漿巖的氧同位素比值對那些經(jīng)歷了低溫水2巖反應(yīng)的物質(zhì)混染尤其敏感,這些物質(zhì)可能曾經(jīng)與大氣水、沉積物及與那些曾經(jīng)和大氣水發(fā)生蝕變的巖石發(fā)生了相互作用,因此氧同位素是示蹤巖漿來源的最有效的工具之一56 。 高溫下鋯石和巖漿的同位素分餾很小,鋯石的氧同位素組成基本上反映了鋯石形成時(shí)巖

31、漿的氧同位素特征57 。研究表明鋯石中的氧同位素?cái)U(kuò)散很慢,氧擴(kuò)散的有效封閉溫度700 °C58-59 ,其氧同位素組成不像其他礦物那樣易受高溫變質(zhì)、熱液蝕變的影響而發(fā)生變化59-60 ,即使巖石經(jīng)歷了麻粒巖相的變質(zhì)作用,巖漿鋯石也能在干的巖石中保留巖漿氧同位素的初始比值57 。 正常地幔的(18 O) 約為5 ,源于地幔的巖石表現(xiàn)出接近該值的、均一的氧同位素比值(該值被認(rèn)為是正常地?;鸪蓭r的比值) 。在高溫條件下鋯石與正常地幔巖石達(dá)到平衡時(shí)的(18 O) = 5. 3 ±0. 3 61 。幔源巖漿分異出的火成巖結(jié)晶的鋯石(18O) 接近正常地幔的(18 O) 61262 。

32、研究表明,鋯石的(18O) 是巖漿物質(zhì)來源的良好示蹤劑。通過鋯石氧同位素分析,可以判斷結(jié)晶出鋯石的巖漿是直接來自地幔還是來自經(jīng)過地殼循環(huán)的物質(zhì) 56 ,60-63 。 如果巖漿的氧同位素比值低于正常地幔值,通常認(rèn)為巖漿的產(chǎn)生是與發(fā)生了熱液蝕變的地殼巖石有關(guān),這些巖石可能是洋殼巖石與高溫海水或者陸殼巖石與大氣降水發(fā)生了高溫?zé)嵋何g變的結(jié)果64-66 。但如果巖漿鋯石的(18 O) 明顯高于正常值,則說明巖漿來源于曾經(jīng)歷低溫水2巖交換的巖石的部分熔融或巖漿在形成過程中有表殼物質(zhì)的加入56 ,67-68 。 鋯石的氧同位素分析為研究花崗質(zhì)巖石的成因和巖漿系統(tǒng)的演化提供了新的方法60-61 ,69 。在

33、巖漿演化過程中,如果體系是封閉的,且同位素分餾達(dá)到平衡(此假設(shè)在大多數(shù)情況下都成立) ,那么從基性- 酸性的巖漿結(jié)晶的鋯石的(18 O) 應(yīng)該相同;但如果發(fā)生了同化混染,則鋯石從內(nèi)到外的生長區(qū)往往記錄了巖漿成分的變化。分析各組鋯石或同一鋯石顆粒不同區(qū)域的氧同位素,可為巖漿的同化混染、不同來源的巖漿混合的定量化研究提供信息,也有助于深入認(rèn)識巖漿的期次問題。 如能對鋯石的U-Pb 年齡和氧同位素組成以及REE 進(jìn)行同步測定,就有可能把氧同位素組成特征與某階段年齡相聯(lián)系,對具有復(fù)雜地質(zhì)歷史的巖石的成因環(huán)境進(jìn)行限定。將鋯石的氧同位素與U-Pb年齡(必要時(shí)進(jìn)行REE 分析) 原位測定相結(jié)合是鋯石的氧同位

34、素研究的發(fā)展趨勢。 近年來,一些學(xué)者對澳洲J ack Hill s 地區(qū)的古老碎屑鋯石進(jìn)行了微區(qū)離子探針U2Pb 年齡和氧同位素組成的研究,獲得了目前已知的最古老的鋯石單顆粒年齡(4. 4 Ga) ,其(18 O) 為7. 4 5. 0 ,比地幔值高,暗示著巖漿混染和高(18 O) 物質(zhì)的重熔,這些高(18O) 的物質(zhì)可能是沉積物或低溫水2巖反應(yīng)的熱液蝕變巖石,表明有上地殼物質(zhì)參與的巖漿過程最早可追溯到4. 4 Ga 前。這些鋯石的氧同位素組成表明,地球在4. 4 Ga 前就可能存在水圈,地球的表面溫度在地核和月球形成后不到100 Ma的時(shí)間里就已冷卻到允許液體水存在的溫度56 ,67 ,69

35、 。 陳道公等65 、鄭永飛等66 分別對大別2蘇魯超高壓變質(zhì)巖中的鋯石進(jìn)行了U-Pb 和氧同位素微區(qū)原位分析,發(fā)現(xiàn)即使在榴輝巖相高級變質(zhì)作用中,鋯石仍基本保存了原巖中鋯石的氧同位素特征,其中原巖年齡為0. 70. 8 Ga 的變質(zhì)巖中鋯石的(18O)明顯低于地幔平均值,表明其形成時(shí)巖漿源區(qū)明顯有大氣降水的加入,這可能與新元古代華南Rodinia超大陸的裂解和全球的雪球事件有關(guān)。 5 結(jié)語 鋯石的結(jié)構(gòu)和成分記錄了巖石所經(jīng)歷的復(fù)雜地質(zhì)過程。對內(nèi)部結(jié)構(gòu)復(fù)雜的鋯石進(jìn)行同位素和化學(xué)成分的微區(qū)原位分析,必須在對其內(nèi)部結(jié)構(gòu)進(jìn)行詳細(xì)研究的基礎(chǔ)上進(jìn)行。 由于幔源鋯石和殼源巖漿鋯石的化學(xué)組成存在較明顯的區(qū)別,因

36、而容易區(qū)分,但利用殼源巖漿鋯石的微量元素、稀土元素特征識別其寄主巖石的類型還有待于成因明確的鋯石微區(qū)原位測試數(shù)據(jù)的積累,因?yàn)槟壳坝糜诮ⅰ芭袆e樹”的數(shù)據(jù)比較有限,且有些數(shù)據(jù)的來源不太明確。此外,在原始成因產(chǎn)狀不清楚的情況下(如碎屑鋯石) ,變質(zhì)鋯石和巖漿鋯石的區(qū)分除利用w ( Th) / w (U) 比值外,能否通過其他的微量元素、稀土元素的比值或圖解來有效區(qū)分,這方面的研究目前報(bào)道較少。 分別對鋯石顆粒中的不同區(qū)域進(jìn)行年代學(xué)、化學(xué)組成、Hf 或O 同位素進(jìn)行原位分析,可以提供有關(guān)巖石成因的豐富信息,而這些信息的提取依賴于分析儀器和分析技術(shù)的進(jìn)步。雖然現(xiàn)在的測試技術(shù)已實(shí)現(xiàn)了礦物的微區(qū)原位測試,

37、但分析儀器的空間分辨率不夠高(目前鋯石REE、O、Hf 同位素微區(qū)測定的束斑直徑一般為2040m) ,且鋯石顆粒一般較小,尤其是變質(zhì)巖中變質(zhì)增生或變質(zhì)重結(jié)晶部分的鋯石,或者是記錄了幾個(gè)期次巖漿活動(dòng)的巖漿鋯石,每一次地質(zhì)作用形成的生長區(qū)域可能較小( 10m) ,致使很多重要的信息無法提取。隨著原位測試技術(shù)的進(jìn)一步發(fā)展,對鋯石內(nèi)部不同結(jié)構(gòu)域地球化學(xué)特征的研究將提供更多、更詳細(xì)、有關(guān)巖石成因的重要信息。 參考文獻(xiàn): 1 Poit rasson F , Hanchar J M ,Schaltegger U. The CurrentState of Accessory Mineral Research

38、J . Chemical Geology , 2002 ,191 :3 - 24. 2 Davis D W,Williams I S ,Krogh T E. Historical Development of Zircon GeochronologyJ . Reviews in Mineralogy & Geochem-ist ry ,2003 ,53 :145 - 173. 3 Ireland T R ,Williams I S. Considerations in Zircon Geochronol-ogy by SIMS J . Reviews in Mineralogy &am

39、p; Geochemist ry ,2003 ,53 :215 - 227. 4 Rasmussen B. Radiomet ric Dating of Sedimentary Rocks : The Application of Diagenetic Xenotime GeochronologyJ . Earth-Science Reviews ,2005 ,68 :197 - 243. 5 王勤燕,陳能松,劉嶸. U2Th2Pb 副礦物的原地原位測年微束分析方法比較與微區(qū)晶體化學(xué)研究J . 地質(zhì)科技情報(bào),2005 ,24(1) :7 - 13. 6 李獻(xiàn)華,梁細(xì)榮,韋剛健,等. 鋯石Hf

40、同位素組成的LAM-MC-ICPMS 精確測定J . 地球化學(xué),2003 ,32 (1) :86 - 90. 7 梁細(xì)榮,李獻(xiàn)華,劉永康. 激光探針等離子體質(zhì)譜法(LAM-ICPMS) 用于年輕鋯石U2Pb 定年J . 地球化學(xué),2000 ,29 (1) :1 - 5. 8 陳能松, 孫敏, 王勤燕, 等. 原地原位定年技術(shù)工作思路探討中深變質(zhì)巖區(qū)精細(xì)變質(zhì)年代學(xué)格架的建立J . 地質(zhì)科 技情報(bào),2003 ,22 (2) :1 - 5. 9 Horn I ,Rudnick R L ,McDonough W F. Precise Elemental and Isotope Ratio Measur

41、ement by Simultaneous Solution Nebu-lisation and Laser Ablation-ICP-MS : Application to U-Pb Geo-chronologyJ . Chemical Geology ,2000 ,164 :281 - 301. 10 Ko sler J ,Sylvester P J . Present Trends and t he Future of Zir-con in Geochronology :Laser Ablation ICPMS J . Reviews in Mineralogy & Geoche

42、mist ry ,2003 ,53 :243 - 275. 11 Catlos E J ,Gilley L D ,Harrison T M. Interpretation of Mona-zite Ages Obtained via in Situ AnalysisJ . Chemical Geology ,2002 ,188 :193 - 215. 12 Scherrer N C , Engi M ,Berger A ,et al . Nondest ructive Chemi-cal Dating of Young Monazite Using XRF- :Context Sensitiv

43、e Microanalysis and Comparison wit h Th-Pb Laser-Ablation Mass Spect romet ric DataJ . Chemical Geology 2002 ,191 :243- 255. 13 Geisler T , Schleicher H. Improved U2Th2Total Pb Dating of Zircons by Elect ron Microprobe Using a Simple New Back-ground Modeling Procedure and Ca as a Chemical Criterion

44、of Fluid-in-Duced U-Th-Pb Discordance in Zircon J . ChemicalGeology ,2000 ,163 :269 - 285. 14 French J E , Heaman L M ,Chacko T. Feasibility of Chemical U-Th-Total Pb Baddeleyite Dating by Elect ron Microprobe J . Chemical Geology ,2002 ,188 :85 - 104. 15 Asami M ,Suzuki K, Grew E S. Chemical Th-U-T

45、otal Pb Dat-ing by Elect ron Microprobe Analysis of Monazite , Xenotime and Zircon f rom t he Archean Napier Complex , East Antarcti- ca : Evidence for Ult ra-High-Temperature Metamorphism at 2 400 MaJ . Precambrian Research ,2002 ,114 :249 - 275. 16 Engi M ,Cheburkin A K, K¨oppel V. Nondest ru

46、ctive Chemical Dating of Young Monazite Using XRF1 : Design of a Mini-Probe ,Age Data for Samples f rom t he Cent ral Alps ,and Com- parison to U-Pb ( TIMS) Data J . Chemical Geology 2002 ,191 :225 - 241. 17 Cherniak D J ,Wat son E B. Diffusion in Zircon J . Reviews in Mineralogy & Geochemist ry

47、 ,2003 ,53 :112 - 139. 18 Mezger K,Krogstad E J . Interpretation of Discordant U-Pb Zir-con Ages : An Elevation J . J . Metamorph. Geol. , 1997 , 15 :127 - 140. 19 陳道公,李彬賢,夏群科,等1 變質(zhì)巖中鋯石U2Pb 計(jì)時(shí)問題評述兼論大別造山帶鋯石定年J . 巖石學(xué)報(bào),2001 ,17 (1) :129 - 138. 20 Corfu F , Hanchar J M , Hoskin P W O , et al . Atlas of

48、Zircon Textures J . Reviews in Mineralogy & Geochemist ry ,2003 , 53 :469 - 495. 21 吳元保,鄭永飛. 鋯石成因礦物學(xué)研究及其對U-Pb 年齡解釋的制約J . 科學(xué)通報(bào),2004 ,49 (16) :1 589 - 1 604. 22 Keay S ,Steele D ,Compston W. Identifying Granite Sources by SHRIMP U-Pb Zircon Geochronology : An Application to t he Lachlan Foldbelt J

49、 . Cont rib. Mineral. Pet rol. ,1999 ,137 :323- 341. 23 de la Rosa J D ,J enner G A ,Cart ro A. A Study of Inherited Zir-cons in Granitoid Rocks f rom t he Sout h Portuguese and Ossa-Morena Zones ,Iberian Massif :Support for t he Exotic Origin of t he Sout h Portuguese Zone J . Tectonophysics ,2002

50、,353 :245- 256. 24 Bruguier O ,Lancelet J R. U-Pb Dating on Single Det rital Zir-con Grains f rom t he Triassic Songpan-Ganze Flysch ( Cent ral China ) : Provenance and Tectonic Correlations J . E PSL , 1997 ,152 :217 - 231. 25 Knudsen T L ,Griffin W L , Hartz E H ,et al . In2situ Hafnium and Lead I

51、sotope Analyses of Det rital Zircons f rom t he Devoni-an Sedimentary Basin of NE Greenland :A Record of RepeatedCrustal ReworkingJ . Cont rib. Mineral. Pet rol. ,2001 ,141 :83- 94. 26 Fedo C M ,Sircombe K N ,Rainbird R H. Det rital Zircon Analy-sis of t he Sedimentary Record J . Reviews in Mineralo

52、gy & Geochemist ry ,2003 ,53 :277 - 298. 27 李任偉,萬渝生,陳振宇,等. 根據(jù)碎屑鋯石SHRIMP U-Pb 測年恢復(fù)早侏羅世大別造山帶源區(qū)特征 J . 中國科學(xué):D 輯,2004 ,34 (4) :320 - 328. 28 Belousova E A , Griffin W L ,OReilly S Y,et al . Igneous Zir-con : Trace Element Composition as an Indicator of Source RockTypeJ . Cont rib. Mineral. Pet rol. ,

53、2002 ,143 :602 - 622. 29 Hoskin P W O ,Ireland T R. Rare Eart h Element Chemist ry of Zircon and it Saves as a Provenance Indicator J . Geology ,2000 ,28 :627 - 630. 30 Hoskin P W O ,SchalteggerU. The Composition of Zircon and Igneous and Metamorphic Pet rogenesisJ . Reviews in Miner-alogy & Geo

54、chemist ry ,2003 ,53 :27 - 62. 31 Belousova E A ,Griffin W L ,Pearson N J . Trace Element Com-position and Cat holuminescence Properties of Sout hern Af Rican Kimberlitic ZirconsJ . Mineral. Mag. ,1998 ,62 :355 - 366. 32 Rubatto D. Zircon Trace Element Geochemist ry : Partitioning wit h Garnet and t

55、 he Link Between U-Pb Ages and Metamor-phismJ . Chemical Geology ,2002 ,184 :123 - 138. 33 Schaltegger U ,Fanning C M ,Günt her D ,et al . Growt h ,Annea-ling and Recrystallization of Zircon and Preservation of Mona-zite in High-Grade Metamorphism:Conventional and In-situ U-Pb Isotope ,Cat hodo

56、luminescence and Microchemical EvidenceJ . Cont ributions to Mineralogy and Pet rology , 1999 , 134 :186 - 201. 34 吳元保,陳道公,夏群科,等. 大別山黃鎮(zhèn)榴輝巖鋯石的微區(qū)微量元素分析:榴輝巖相變質(zhì)鋯石的微量元素特征 J . 科學(xué)通報(bào),2002 ,47 (11) :859 - 863. 35 吳元保, 陳道公, 夏群科, 等. 大別山黃土嶺麻粒巖中鋯石LAM-ICP-MS 微區(qū)微量元素分析和Pb-Pb 定年 J . 中國科學(xué):D 輯,2003 ,33 (1) :20 - 28. 36 Liati A ,Gebauer D. Const raining t he Prograde and Ret rograde p-T-t of Eocene HP Rocks by SHRIMP Dating of Different Zircon Domains : Inferred Rates of Heating ,Burial ,Cooling and Exhumation for Cent ral Rhodop

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論