




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第三章:液體運動學(xué)思考題1 .區(qū)別:(1)拉格朗日法:拉格朗日法是一液體質(zhì)點為研究對象,研究每個液體質(zhì)點所具有的運動要素(速度,加速度,壓強)時間變化的規(guī)律。(2)歐拉法:歐拉法是研究流場中某些固定空間點上的運動要素隨時間的變化規(guī)律。聯(lián)系:二者都是描述液體的運動的基本方法du2 .(羽)反映了在同一空間上液體質(zhì)點運動速度隨時間的變化,稱為dududuu+u+u時變加速度;(Xdx反映了同一時刻位于不同空間點上液體質(zhì)點的速度變化,稱為位變加速度。3,液體質(zhì)點的運動形式:由平移、線變形、角變形及旋轉(zhuǎn)運動等四種基本形式所組成。(1)位置平移:uxdtuydtu7dt-(2)線變形:xx一萬f;ayy
2、-西;_3uz7一而.(3)角變形:-吆+幺|一繞x軸(yoz面)2(外改)-4十%|繞Z軸(即面)2106,)1(du.duy例=-X2(4)旋轉(zhuǎn):6=.1嗎=-如_犯dx)y21du、.61c公=一-2XdxJL吆+吆繞y軸(xoz面)21dzdxJ4按照液體運動中質(zhì)點本身有無旋轉(zhuǎn),將液體運動分為有旋或無旋。若液體運動時每個質(zhì)點都不存在著繞自身軸的旋轉(zhuǎn)運動,即角速度為0,稱為無旋流;反之為有旋流。無旋流:3x=3y=Sz=(),無旋必有勢函數(shù)。5.使用條件:不可壓縮液體;物理意義:液體的體積變形率為零,即體積不會隨時間發(fā)生變化。C0y=0co=0*口.=0duxdu.&dxduvdu.&d
3、ydux6%dydx*定義:設(shè)流場中有流速勢函數(shù)Mm,,z/),設(shè)函數(shù)滿足:=U則函數(shù)稱為流速勢函數(shù),dx+dy+dz=uXdx+udy+u.dz(=d)dxdy&d(p=uYdx+uxdv+u.dz若流速已知,可利用上式求出勢流的流速勢函7,意義:給分析液體帶了很大的方便,更能辨別液體屬于有旋或無旋1.解:du 3uv duuF uF ux dx y dy z 3zayMy 嗎 嗎uuF u x 0x yay 7 dza = 02.解:當t=l時du du du du XXXXa = uF uF u 2x ux Ox y dy 7 dz + at =z x + yz 嗎 嗎 duy duya
4、 = uF uF u 2x x dx y dy 7 dz+dt =z y + xza = 0在(1,2,1)得:ax = 3m/s2; ay = 3m/s2 . az = dx dy dx dy 1 23解:或工所以=丁即尹-y+txx1 1 2當t=l時,在(0, 0)點的流線方程為:x= t(y - 2y)4.解:由已知條件知流速與時間無關(guān),所以液體為恒定流。duXdx2xyk22 2(X2 + y2)uy 2xykdy ,22、2(x + y );所以液體質(zhì)點有變形運動OU_2而=-k(x2+y2)+ky(x24-y2)*2JOU_2=k(x2+y2)-kx(x2+y2)*2xl(dnx
5、auyk(y2-x2)exy=yx=2西+/=牙手。(x+y)所以液體質(zhì)點有角變形1k(y2+x2)1叫咽*+y2)-Ld!%-萬(0X一dy)=k付+y2)所以液體質(zhì)點自身無旋轉(zhuǎn)運動dx dyu u x y5.解:(1)dxdy為為不可壓縮液體P/0t=odu du dux . ydx+dy+dz=0所以美一菽即:流線方程為x2+y2=c所以滿足流動連續(xù)函數(shù)(2)因為為不可壓縮液體p/0t=o啊嗎IzIz-=4H0dxdydz所以不滿足流動連續(xù)函數(shù)(3)因為為不可壓縮液體P/t=OdUx嗎3uz22-222-2貳+西+后=2xy(x+y)-2xy(x+y)=0所以滿足流動連續(xù)函數(shù)6.u=+U
6、yj+uzk=6Xj+6yj-7tkdu時變加速度dt=-7 duxu F位變加速度X嗎ydy-+ uz3uz-t = 36x + 36y dz)全加速度 a = 36xi + 36yj - 7k3uv duXXa = uF u +x x Ox y dydu duuz dz + at= 2t + 2y(6 + 2xy + t2)7.ux=64-2xy+t2uy=-(xy2+lOt)uz=25(xy2+lOt)*2x叫duyduyduyay=udx+Uydy+與位+區(qū)=-10+(6+2xy+t2)*(-y2)+(xy2+lOt)*2xy當t=l在(3,0,2)時aY=-58m/s2av=-10m/s2a=0入y/1/duduu1/xyma:Jy=cyx=而+dx)=丫下(2)所以9.解2dy.duzyl/3uzduy2dydzduduAL21dzdxl/y出2dxdydz=0=0UmaxZ1ro-yumax2ro有旋流為無勢流SuP-z=2xy(1)fcxx_dxJ當x=l,y=2時*xx4=-yy=一4yy2xy=o=Ozzlfdux嗎=-hxy
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 出售電梯塔吊合同范本
- 奶茶店商鋪合同范本
- 病句主客顛倒22題及答案
- 2025版標準工程合同管理協(xié)議模板
- 2025合同履行的全面履行原則
- 2025年個體商戶門面租賃合同范本
- 2025 北京市房屋買賣合同 北京房產(chǎn)交易平臺
- 2025土地使用權(quán)轉(zhuǎn)讓合同樣本
- 2025光伏發(fā)電承包協(xié)議承包合同范本
- 2025呼和浩特租房合同范本
- 信息安全等級保護管理辦法
- 2025年光大銀行校園招聘筆試參考題庫(帶答案)
- 消防更換設(shè)備方案范本
- 2024年環(huán)境影響評估試題及答案
- 【初中歷史】2024-2025學(xué)年部編版七年級下學(xué)期歷史中考復(fù)習(xí)提綱
- 《電力建設(shè)工程施工安全管理導(dǎo)則》(nbt10096-2018)
- 全過程工程咨詢投標方案(技術(shù)方案)
- 湖南省2025屆高三九校聯(lián)盟第二次聯(lián)考歷史試卷(含答案解析)
- 2025年內(nèi)蒙古民族幼兒師范高等??茖W(xué)校單招職業(yè)技能測試題庫新版
- 2025年營銷技能考試試題及答案
- 家具全屋定制的成本核算示例-成本實操
評論
0/150
提交評論