中學(xué)數(shù)學(xué)素質(zhì)教學(xué)中情境教學(xué)的意義_第1頁
中學(xué)數(shù)學(xué)素質(zhì)教學(xué)中情境教學(xué)的意義_第2頁
中學(xué)數(shù)學(xué)素質(zhì)教學(xué)中情境教學(xué)的意義_第3頁
中學(xué)數(shù)學(xué)素質(zhì)教學(xué)中情境教學(xué)的意義_第4頁
中學(xué)數(shù)學(xué)素質(zhì)教學(xué)中情境教學(xué)的意義_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、中學(xué)數(shù)學(xué)素質(zhì)教學(xué)中情境教學(xué)的意義 課堂教學(xué)是實施素質(zhì)教學(xué)的主陣地,提高學(xué)生的素質(zhì)是課堂教學(xué)的重要內(nèi)容,怎樣將“應(yīng)試教育”向“素質(zhì)教育”轉(zhuǎn)軌,怎樣變單純的“知識 輸入”為“能力培養(yǎng)、智力開發(fā)”,如何大面積提高中學(xué)的數(shù) 學(xué)教學(xué)質(zhì)量,這是擺在我們廣大數(shù)學(xué)教師面前的一個重大課題。在眾多教學(xué)改革的原則中,主體性是素質(zhì)教育的核心和靈魂.在教學(xué)中要真正體現(xiàn)學(xué)生的主體性,就必須使認知過程是一個再創(chuàng)造的過程,使學(xué)生在自覺、主動、深層次的參與過程中,實現(xiàn)發(fā)現(xiàn)、理解、創(chuàng)造與應(yīng)用,在學(xué)習(xí)中學(xué)會學(xué)習(xí).使學(xué)生產(chǎn)生明顯的意識傾向和情感共鳴,乃是主體參與的條件和關(guān)鍵. 情境教學(xué)具有一定的代表性,它以優(yōu)化的情境為空間,根據(jù)教材

2、的特點營造、渲染一種富有情境的氛圍,讓學(xué)生的活動有機地注入到學(xué)科知識的學(xué)習(xí)之中。它講究強調(diào)學(xué)生的積極性,強調(diào)興趣的培養(yǎng),以形成主動發(fā)展的動因,提倡讓學(xué)生通過觀察,不斷積累豐富的表象,讓學(xué)生在實踐感受中逐步認知知識,為學(xué)好數(shù)學(xué)、發(fā)展智力打下基礎(chǔ)。簡言之,情境教學(xué)以促進學(xué)生整體能力的和諧發(fā)展為主要目標. 結(jié)合本人十多年的教學(xué)經(jīng)驗和近幾年在數(shù)學(xué)教學(xué)實踐中的探索,談?wù)勄榫辰虒W(xué)的一些體會 創(chuàng)設(shè)情境教學(xué)的原則 創(chuàng)設(shè)情境的方法很多,但必須做到科學(xué)、適度,具體地說,有以下幾個原則: 要有難度,但須在學(xué)生的“最近發(fā)現(xiàn)區(qū)”內(nèi),使學(xué)生可以“跳一跳,摘桃子”. 要考慮到大多數(shù)學(xué)生的認知水平,應(yīng)面向全體學(xué)生,切忌專為少

3、數(shù)人設(shè)置. 要簡潔明確,有針對性、目的性,表達簡明扼要和清晰,不要含糊不清,使學(xué)生盲目應(yīng)付,思維混亂. 要注意時機,情境的設(shè)置時間要恰當,尋求學(xué)生思維的最佳突破口. 要少而精,做到教者提問少而精,學(xué)生質(zhì)疑多且深. 重視創(chuàng)設(shè)情境教學(xué)的特性 一、誘發(fā)主動性: 傳統(tǒng)教育的弊端告誡我們:教育應(yīng)以學(xué)生為本。面對當今新時期的青少年,服務(wù)于這樣一種充滿生氣、有真摯情感、有更大可塑性的學(xué)習(xí)活動主體,教師決不可以越俎代庖,以知識的講授替代主體的活動。情境教學(xué)就是把學(xué)生的主動參與具體化在優(yōu)化的情境中產(chǎn)生動機、充分感受、主動探究。如在復(fù)習(xí)函數(shù)這節(jié)課時,教師可以創(chuàng)設(shè)以下的教學(xué)情境: 案例: “我”在某市購物,甲商店提

4、出的優(yōu)惠銷售方法是所有商品按九五折銷售,而乙商店提出的優(yōu)惠方法是凡一次購滿500元可領(lǐng)取九折貴賓卡。請同學(xué)們幫老師出出主意,“我”究竟該到哪家商店購物得到的優(yōu)惠更多?問題提出后,學(xué)生們十分感興趣,紛紛議論,連平時數(shù)學(xué)成績較差的學(xué)生也躍躍欲試。學(xué)生們學(xué)習(xí)的主動性很好地被調(diào)動了起來。活勢形成,學(xué)生們在不知不覺中運用了分類討論的思想方法。 曾有人說:“數(shù)學(xué)是思維的體操”。數(shù)學(xué)教學(xué)是思維活動的教學(xué)。學(xué)生的思維活動有賴于教師的循循善誘和精心的點撥和啟發(fā)。因此,課堂情境的創(chuàng)設(shè)應(yīng)以啟導(dǎo)學(xué)生思維為立足點。心理學(xué)研究表明:不好的思維情境會抑制學(xué)生的思維熱情,所以,課堂上不論是設(shè)計提問、幽默,還是欣喜、競爭,都應(yīng)

5、考慮活動的啟發(fā)性,孔子曰:“不憤不啟,不悱不發(fā)”,如何使學(xué)生心理上有憤有悱,正是課堂情境創(chuàng)設(shè)所要達到的目的。 二、強化感受性: 情境教學(xué)往往會具有鮮明的形象性,使學(xué)生如入其境,可見可聞,產(chǎn)生真切感。只有感受真切,才能入境。要做到這一點,可以用創(chuàng)設(shè)問題情境來激發(fā)學(xué)生求知欲。創(chuàng)設(shè)問題情境就是在講授內(nèi)容和學(xué)生求知心理間制造一種“不和諧”,將學(xué)生引入一種與問題有關(guān)的情境中。心理學(xué)研究表明:“認知矛盾時動機的根源?!闭n堂上,教師創(chuàng)設(shè)認知不協(xié)調(diào)的問題情境,以激起學(xué)生研究問題的動機,通過探索,消除劇烈矛盾,獲得積極的心理滿足。創(chuàng)設(shè)問題情境應(yīng)注意要小而具體、新穎有趣、有啟發(fā)性,同時又有適當?shù)碾y度。此外,還要注

6、意問題情境的創(chuàng)設(shè)必須與課本內(nèi)容保持相對一致,更不能運用不恰當?shù)谋扔?不利于學(xué)生正確理解概念和準確使用數(shù)學(xué)語言能力的形成。教師要善于將所要解決的課題寓于學(xué)生實際掌握的知識基礎(chǔ)之中,造成心理上的懸念,把問題作為教學(xué)過程的出發(fā)點,以問題情境激發(fā)學(xué)生的積極性,讓學(xué)生在迫切要求下學(xué)習(xí)。 案例:在對“等腰三角形的判定”進行教學(xué)設(shè)計時,教師可以通過具體問題的解決創(chuàng)設(shè)出如下誘人的問題情境: 在ABC中,AB=AC,倘若不留神,它的一部分被墨水涂沒了,只留下了一條底邊BC和一個底角 C,請問,有沒有辦法把原來的等腰三角形重新畫出來?學(xué)生先畫出殘余圖形并思索著如何畫出被墨水涂沒的部分。各種畫法出現(xiàn)了,有的學(xué)生是先

7、量出C的度數(shù),再以BC為一邊,B點為頂點作B=C, B與 C的邊相交得頂點A;也有的是取BC中點D,過D點作BC的垂線,與C的一邊相交得頂點A,這些畫法的正確性要用“判定定理”來判定,而這正是要學(xué)的課題。于是教師便抓住“所畫的三角形一定是等腰三角形嗎?”引出課題,再引導(dǎo)學(xué)生分析畫法的實質(zhì),并用幾何語言概括出這個實質(zhì),即“ABC中,若B=C,則AB=AC”。這樣,就由學(xué)生自己從問題出發(fā)獲得了判定定理。接著,再引導(dǎo)學(xué)生根據(jù)上述實際問題的啟示思考證明方法。 除創(chuàng)設(shè)問題情境外,還可以創(chuàng)設(shè)新穎、驚愕、幽默、議論等各種教學(xué)情境,良好的情境可以使教學(xué)內(nèi)容觸及學(xué)生的情緒和意志領(lǐng)域,讓學(xué)生深切感受學(xué)習(xí)活動的全過

8、程并升化到自己精神的需要,成為提高課堂教學(xué)效率的重要手段。這正象贊可夫所說的:“教學(xué)法一旦觸及學(xué)生的情緒和意志領(lǐng)域,這種教學(xué)法就能發(fā)揮高度有效的作用?!?三、著眼發(fā)展性: 數(shù)學(xué)是一門抽象和邏輯嚴密的學(xué)科,正由于這一點令相當一部分學(xué)生望而卻步,對其缺乏學(xué)習(xí)熱情。情境教學(xué)當然不能將所有的數(shù)學(xué)知識都用生活真實形象再現(xiàn)出來,事實上情境教學(xué)的形象真切,并不是實體的復(fù)現(xiàn)或忠實的復(fù)制、照相式的再造,而是以簡化的形體,暗示的手法,獲得與實體在結(jié)構(gòu)上對應(yīng)的形象,從而給數(shù)學(xué)史料,采用讀后小結(jié)的方式,不僅可以使學(xué)生加深對課文的理解,而且人類對圓周率認識不斷加深的過程也是學(xué)生深受感染,興趣盎然,這對培養(yǎng)學(xué)生獻身科學(xué)的

9、探索精神有著積極的意義。 五、貫穿實踐性: 情境教學(xué)注重“情感”,又提倡“學(xué)以致用”,努力使二者有機地統(tǒng)一起來,在特定的情境中和熱烈的情感驅(qū)動下進行實際應(yīng)用,同時還通過實際應(yīng)用來強化學(xué)習(xí)成功所帶來的快樂。數(shù)學(xué)教學(xué)也應(yīng)以訓(xùn)練學(xué)生能力為手段,貫穿實踐性,把現(xiàn)在的學(xué)習(xí)和未來的應(yīng)用聯(lián)系起來,并注重學(xué)生的應(yīng)用操作和能力的培養(yǎng)。我們充分利用情境教學(xué)特有的功能,在拓展的寬闊的數(shù)學(xué)教學(xué)空間里,創(chuàng)設(shè)既帶有情感色彩,又富有實際價值的操作情境,讓學(xué)生扮演測量員,統(tǒng)計員進行實地調(diào)查,搜集數(shù)據(jù),制統(tǒng)計圖,寫調(diào)查報告,其教學(xué)效果可謂“百問不如一做”,學(xué)生產(chǎn)生頓悟,求知欲得到滿足更加樂意投入到新的學(xué)習(xí)情境中去了。同時對學(xué)生

10、思維能力、表達能力、動手能力、想象能力、提出問題和解決問題的能力,甚至交際能力、應(yīng)變能力等等,都得到了較好的培養(yǎng)和訓(xùn)練。 案例: “三角形內(nèi)角和定理”就可以通過實踐操作的辦法來創(chuàng)設(shè)教學(xué)情境。學(xué)生的認知結(jié)構(gòu)中,已經(jīng)有了角的有關(guān)概念,三角形的概念,還具有同位角、內(nèi)錯角相等等有關(guān)平行線的性質(zhì)。這些都是學(xué)習(xí)新知識的“固著點”,但由于它們與“三角形內(nèi)角和定理”之間的邏輯聯(lián)系并不十分明顯,大部分同學(xué)都難以想到要對三角形的三個內(nèi)角之和進行一番研究,這種情況下,我們可以創(chuàng)設(shè)這樣的數(shù)學(xué)情境: 首先,在回顧三角形概念的基礎(chǔ)上,提出:“三角形的三個內(nèi)角會不會存在某種關(guān)系呢?”這是綱領(lǐng)性提問,對學(xué)生的思維還達不到確定

11、的導(dǎo)向作用,學(xué)生可能會對角與角的相等、不等、兩角之和(差)與第三個角的大小比較等 等問題進行研究,當發(fā)現(xiàn)這些問題只對某些特殊三角形有意義時,他們的思維可能會指向“三個內(nèi)角的和是否有一定的規(guī)律?”我適時地提出:“請同學(xué)們畫一些三角形(包括銳角、直角、鈍角三角形),再用量角器量出三個角,觀察一下各三角形的三個內(nèi)角有什么聯(lián)系?!苯?jīng)測量、計算,學(xué)生發(fā)現(xiàn)三個內(nèi)角的和都在180左右。我再進一步提出:“由于具體測量會有誤差,但和數(shù)都在180左右,三角形的三個內(nèi)角之和是否為180呢?請同學(xué)們把三個角拼在一起,看一看,構(gòu)成了一個怎樣的角?”學(xué)生在完成這一實驗后發(fā)現(xiàn),三個內(nèi)角拼在一起構(gòu)成一個平角。經(jīng)過上述兩步實驗

12、,提出“三角形的三個內(nèi)角之和為180”的猜想就水到渠成了。接著,我指出了實驗操作的局限性,并要求學(xué)生給出嚴格的邏輯證明。在尋找證明方法時,我提出:“觀察拼接圖形,從中能得到什么啟示?”學(xué)生可憑借實踐操作時的感性經(jīng)驗,找到證明方法。實踐操作不但使學(xué)生獲得了定理的猜想,而且受到了證明定理的啟發(fā),顯示了很大的智力價值。又如:我在初三復(fù)習(xí)列方程解應(yīng)用題時,為了讓學(xué)生明白學(xué)數(shù)學(xué)的主要目的是要培養(yǎng)思維和掌握解決問題的能力,在課的最后出了一道開放型命題: 將一個50米長30米寬的矩形空地改造成為花壇,要求花壇所占的面積,恰為空地面積的一半。試給出你的設(shè)計方案(要求:美觀,合理,實用,要給出詳細數(shù)據(jù))。 這題

13、是一道中考題,是應(yīng)用數(shù)學(xué)的典型實例,既培養(yǎng)學(xué)生解決問題的能力又開發(fā)他們的創(chuàng)新思維。學(xué)生討論得十分激烈,不斷有新的創(chuàng)意冒出來,有的因無法操作而被別人否定,也有不少十分不錯的設(shè)想。通過這次討論,我覺得每個學(xué)生都是有潛力可挖的,解決問題的能力雖有強弱,但我們教師更應(yīng)該多培養(yǎng)多點撥多激勵,以增強學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心。 創(chuàng)設(shè)情境教學(xué)的主要方式 一,創(chuàng)設(shè)應(yīng)用性情境,引導(dǎo)學(xué)生自己發(fā)現(xiàn)數(shù)學(xué)命題(公理、定理、性質(zhì)、公式) 案例1 在“均值不等式”一節(jié)的教學(xué)中,可設(shè)計如下兩個實際應(yīng)用情境,引導(dǎo)學(xué)生從中發(fā)現(xiàn)關(guān)于均值不等式的定理及其推論. 某商店在節(jié)前進行商品降價酬賓銷售活動,擬分兩次降價.有三種降價方案:甲方案是第

14、一次打p折銷售,第二次打q折銷售;乙方案是第一次打q折銷售,第二次找p折銷售;丙方案是兩次都打(p+q)/2折銷售.請問:哪一種方案降價較多? 今有一臺天平兩臂之長略有差異,其他均精確.有人要用它稱量物體的重量,只須將物體放在左、右兩個托盤中各稱一次,再將稱量結(jié)果相加后除以2就是物體的真實重量.你認為這種做法對不對?如果不對的話,你能否找到一種用這臺天平稱量物體重量的正確方法? 學(xué)生通過審題、分析、討論,對于情境,大都能歸結(jié)為比較pq與(p+q)/2)2大小的問題,進而用特殊值法猜測出pq(p+q)/2)2,即可得p2+q22pq.對于情境,可安排一名學(xué)生上臺講述:設(shè)物體真實重量為G,天平兩臂

15、長分別為l1、l2,兩次稱量結(jié)果分別為a、b,由力矩平衡原理,得l1G=l2a,l2G=l1b,兩式相乘,得G2=ab,由情境的結(jié)論知ab(a+b)/2)2,即得(a+b)/2,從而回答了實際問題.此時,給出均值不等式的兩個定理,已是水到渠成,其證明過程完全可以由學(xué)生自己完成. 以上兩個應(yīng)用情境,一個是經(jīng)濟生活中的情境,一個是物理中的情境,貼近生活,貼近實際,給學(xué)生創(chuàng)設(shè)了一個觀察、聯(lián)想、抽象、概括、數(shù)學(xué)化的過程.在這樣的問題情境下,再注意給學(xué)生動手、動腦的空間和時間,學(xué)生一定會想學(xué)、樂學(xué)、主動學(xué). 二,創(chuàng)設(shè)趣味性情境,引發(fā)學(xué)生自主學(xué)習(xí)的興趣 案例2 在“等比數(shù)列”一節(jié)的教學(xué)時,可創(chuàng)設(shè)如下有趣的

16、情境引入等比數(shù)列的概念: 阿基里斯(希臘神話中的善跑英雄)和烏龜賽跑,烏龜在前方1里處,阿基里斯的速度是烏龜?shù)?0倍,當它追到1里處時,烏龜前進了1/10里,當他追到1/10里,烏龜前進了1/100里;當他追到1/100里時,烏龜又前進了1/1000里 分別寫出相同的各段時間里阿基里斯和烏龜各自所行的路程; 阿基里斯能否追上烏龜? 讓學(xué)生觀察這兩個數(shù)列的特點引出等比數(shù)列的定義,學(xué)生興趣十分濃厚,很快就進入了主動學(xué)習(xí)的狀態(tài). 三,創(chuàng)設(shè)開放性情境,引導(dǎo)學(xué)生積極思考 案例3 直線y=2x+m與拋物線y=x2相交于A、B兩點,_ ,求直線AB的方程.(需要補充恰當?shù)臈l件,使直線方程得以確定) 此題一出

17、示,學(xué)生的思維便很活躍,補充的條件形形色色.例如: |AB|=; 若O為原點,AOB=90; AB中點的縱坐標為6; AB過拋物線的焦點F.   涉及到的知識有韋達定理、弦長公式、中點坐標公式、拋物線的焦點坐標,兩直線相互垂直的充要條件等等,學(xué)生實實在在地進入了“狀態(tài)”. 四,創(chuàng)設(shè)直觀性圖形情境,引導(dǎo)學(xué)生深刻理解數(shù)學(xué)概念 案例4 “充要條件”是高中數(shù)學(xué)中的一個重要概念,并且是教與學(xué)的一個難點.若設(shè)計如下四個電路圖,視“開關(guān)A的閉合”為條件A,“燈泡B亮”為結(jié)論B,給充分不必要條件、充分必要條件、必要不充分條件、既不充分又不必要條件以十分貼切、形象的詮釋,則使學(xué)生興趣盎然,對“充要條件

18、”的概念理解得入木三分. 五,創(chuàng)設(shè)新異懸念情境,引導(dǎo)學(xué)生自主探究 案例5 在“拋物線及其標準方程”一節(jié)的教學(xué)中,引出拋物線定義“平面上與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線”之后,設(shè)置這樣的問題情境:初中已學(xué)過的一元二次函數(shù)的圖象就是拋物線,而今定義的拋物線與初中已學(xué)的拋物線從字面上看不一致,它們之間一定有某種內(nèi)在聯(lián)系,你能找出這種內(nèi)在的聯(lián)系嗎? 此問題問得新奇,問題的結(jié)論應(yīng)該是肯定的,而課本中又無解釋,這自然會引起學(xué)生探索其中奧秘的欲望.此時,教師注意點撥:我們應(yīng)該由y=x2入手推導(dǎo)出曲線上的動點到某定點和某定直線的距離相等,即可導(dǎo)出形如動點P(x,y)到定點F(x0,y0

19、)的距離等于動點P(x,y)到定直線l的距離.大家試試看!學(xué)生紛紛動筆變形、拚湊,教師巡視后可安排一學(xué)生板演并進行講述: x2=y x2+y2=y+y2 x2+y2-(1/2)y=y2+(1/2)y x2+(y-1/4)2=(y+1/4)2 =|y+14|. 它表示平面上動點P(x,y)到定點F(0,1/4)的距離正好等于它到直線y=-1/4的距離,完全符合現(xiàn)在的定義. 這個教學(xué)環(huán)節(jié)對訓(xùn)練學(xué)生的自主探究能力,無疑是非常珍貴的. 六,創(chuàng)設(shè)疑惑陷阱情境,引導(dǎo)學(xué)生主動參與討論 案例6 雙曲線x2/25-y2/144=1上一點P到右焦點的距離是5,則下面結(jié)論正確的是( ). A.P到左焦點的距離為8

20、B.P到左焦點的距離為15 C.P到左焦點的距離不確定 D.這樣的點P不存在 教學(xué)時,根據(jù)學(xué)生平時練習(xí)的反饋信息,有意識地出示如下兩種錯誤解法: 錯解1.設(shè)雙曲線的左、右焦點分別為F1、F2,由雙曲線的定義得 |PF1|-|PF2|=10. |PF2|=5, |PF1|=|PF2|+10=15,故正確的結(jié)論為B. 錯解2.設(shè)P(x0,y0)為雙曲線右支上一點,則 |PF2|=ex0-a,由a=5,|PF2|=5,得ex0=10, |PF1|=ex0+a=15,故正確結(jié)論為B. 然后引導(dǎo)學(xué)生進行討論辨析:若|PF2|=5,|PF1|=15,則|PF1|+|PF2|=20,而|F1F2|=2c=26,即有|PF1|+|PF2|F1F2|,這與三角形兩邊之和大于第三邊矛盾,可見這樣的點P是不存在的.因此,正確的結(jié)論應(yīng)為D. 進行上述引導(dǎo),讓學(xué)生比較定義,找出了產(chǎn)生錯誤的在原因即是忽視了雙曲線定義中的限制條件,所以除了考慮條件|PF1|-|PF2|=2a,還要注意條件ac和|PF1|+|PF2|F1F2|. 通過上述問題的辨析,不僅使學(xué)生從“陷阱”中跳出來,增強了防御“

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論