![實際問題與一元一次方程應(yīng)用題歸類匯集_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/3/5c61ec14-52aa-487e-a340-3b79ad8aaab9/5c61ec14-52aa-487e-a340-3b79ad8aaab91.gif)
![實際問題與一元一次方程應(yīng)用題歸類匯集_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/3/5c61ec14-52aa-487e-a340-3b79ad8aaab9/5c61ec14-52aa-487e-a340-3b79ad8aaab92.gif)
![實際問題與一元一次方程應(yīng)用題歸類匯集_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/3/5c61ec14-52aa-487e-a340-3b79ad8aaab9/5c61ec14-52aa-487e-a340-3b79ad8aaab93.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、實際問題與一元一次方程應(yīng)用題歸類匯集一、列方程解應(yīng)用題的一般步驟(解題思路)(1)審審題:認真審題,弄清題意,找出能夠表示本題含義的相等關(guān)系(找出等量關(guān)系)(2)設(shè)設(shè)出未知數(shù):根據(jù)提問,巧設(shè)未知數(shù)(3)列列出方程:設(shè)出未知數(shù)后,表示出有關(guān)的含字母的式子,然后利用已找出的等量關(guān)系 列出方程(4)解解方程:解所列的方程,求出未知數(shù)的值( 5)答檢驗,寫答案:檢驗所求出的未知數(shù)的值是否是方程的解,是否符合實際, 檢驗后寫出答案 (注意帶上單位)二、各類題型解法分析 一元一次方程應(yīng)用題歸類匯集: 行程問題,工程問題,和差倍分問題(生產(chǎn)、做工等各類問題) , 等積變形問題,調(diào)配問題,分配問題,配套問題,
2、增長率問題, 數(shù)字問題,方案設(shè)計與成本分析 ,古典數(shù)學(xué),濃度問題等。第一類、行程問題基本的數(shù)量關(guān)系:( 1)路程速度×時間 速度路程÷時間 時間路程÷速度要特別注意:路程、速度、時間的對應(yīng)關(guān)系(即在某段路程上所對應(yīng)的速度和時間各是多少) 常用的等量關(guān)系:1、甲、乙二人相向相遇問題 甲走的路程乙走的路程總路程 二人所用的時間相等或有提前量2、甲、乙二人中,慢者所行路程或時間有提前量的同向追擊問題甲走的路程乙走的路程提前量 二人所用的時間相等或有提前量3、單人往返 各段路程和總路程 各段時間和總時間 勻速行駛時速度不變4、行船問題與飛機飛行問題 順?biāo)俣褥o水速度水流速
3、度 逆水速度靜水速度水流速度5、考慮車長的過橋或通過山洞隧道問題 將每輛車的車頭或車尾看作一個人的行駛問題去分析,一切就一目了然。6、時鐘問題: 將時鐘的時針、分針、秒針的尖端看作一個點來研究 通常將時鐘問題看作以整時整分為起點的同向追擊問題來分析。常用數(shù)據(jù): 時針的速度是 0.5°/分 分針的速度是 6°/ 分 秒針的速度是 6°/秒 一、一般行程問題(相遇與追擊問題)1、從甲地到乙地,某人步行比乘公交車多用3.6 小時,已知步行速度為每小時 8 千米,公交車的速度為每小時 40 千米,設(shè)甲、乙兩地相距 x 千米,則列方程為。解:等量關(guān)系 步行時間乘公交車的時間
4、 3.6 小時列出方程是: x x 3.68 402、甲、乙兩人在相距 18 千米的兩地同時出發(fā),相向而行, 那么在乙出發(fā) 1小時 30 分相遇,當(dāng)甲比乙每小時快 解:等量關(guān)系 甲行的總路程乙行的路程總路程1 小時 48 分相遇,如果甲比乙早出發(fā) 40 分鐘,1 千米時,求甲、乙兩人的速度。(18 千米 )設(shè)乙的速度是 x 千米 /時,則列出方程是:2 1 1132 112 (x 1) 112 x 183、某人從家里騎自行車到學(xué)校。若每小時行15 千米,可比預(yù)定時間早到 15 分鐘;若每小時行 9 千米,可比預(yù)定時間晚到 15 分鐘;求從家里到學(xué)校的路程有多少千米?解:等量關(guān)系 速度 15 千
5、米行的總路程速度 9 千米行的總路程 速度 15 千米行的時間 15 分鐘速度 9 千米行的時間 15 分鐘 老師提醒:速度已知時,設(shè)時間列路程等式的方程,設(shè)路程列時間等式的方程。x 15 x15 60 91560280 米,兩人同時同地同向起跑,方法一 :設(shè)預(yù)定時間為 x小/時,則列出方程是: 15( x 0.25) 9(x0.25)方法二: 設(shè)從家里到學(xué)校有 x 千米,則列出方程是:4、在 800 米跑道上有兩人練習(xí)中長跑,甲每分鐘跑320 米,乙每分鐘跑t 分鐘后第一次相遇, t 等于 分鐘。老師提醒:此題為環(huán)形跑道上,同時同地同向的追擊問題(且為第一次相遇)等量關(guān)系:快者跑的路程慢者跑
6、的路程 800 (俗稱多跑一圈) 320t280t 800t20 5、一列客車車長 200 米,一列貨車車長 280 米,在平行的軌道上相向行駛,從兩車頭相遇到兩車車尾完全離開經(jīng)過 16 秒,已知客車與貨車的速度之比是 3: 2,問兩車每秒各行駛多少米? 老師提醒:將兩車車尾視為兩人,并且以兩車車長和為總路程的相遇問題。等量關(guān)系:快車行的路程慢車行的路程兩列火車的車長之和設(shè)客車的速度為 3x 米/ 秒,貨車的速度為 2x 米 /秒,則 16×3x16× 2x2002806、與鐵路平行的一條公路上有一行人與騎自行車的人同時向南行進。行人的速度是每小時3.6km ,騎自行車的人
7、的速度是每小時 10.8km 。如果一列火車從他們背后開來,它通過行人的時間是 22 秒,通過騎自行車的人的時 間是 26 秒。 行人的速度為每秒多少米? 這列火車的車長是多少米?老師提醒:將火車車尾視為一個快者,則此題為以車長為提前量的追擊問題。等量關(guān)系: 兩種情形下火車的速度相等 兩種情形下火車的車長相等在時間已知的情況下,設(shè)速度列路程等式的方程,設(shè)路程列速度等式的方程。解: 行人的速度是: 3.6km/時 3600 米÷ 3600 秒1 米/秒問爸爸能在我和媽媽到外婆家之前追上我們嗎?提示:此題為典型的追擊問題)騎自行車的人的速度是:10.8km/時 10800 米÷
8、 3600 秒3 米/秒 方法一:設(shè)火車的速度是x 米/ 秒,則 26×(x 3)22×(x1) 解得 x4方法二:設(shè)火車的車長是x 22 1 x 26 3x 米,則22 267、休息日我和媽媽從家里出發(fā)一同去外婆家,我們走了1 小時后,爸爸發(fā)現(xiàn)帶給外婆的禮品忘在家里,便立刻帶上禮品以每小時 6 千米的速度去追我們, 如果我和媽媽每小時行 2 千米, 從家里到外婆家需要 1 小時 45 分鐘,解:設(shè)爸爸用 x 小時追上我們,則 6x 2x2×1解得 x0.5 0.5 小時 1 小時 45分鐘 答:能追上。8、一次遠足活動中,一部分人步行,另一部分乘一輛汽車,兩部分
9、人同地出發(fā)。汽車速度是60 千米 / 時,步行的速度是 5 千米/時,步行者比汽車提前 1 小時出發(fā),這輛汽車到達目的地后,再回頭接步行的這部分人。出發(fā) 地到目的地的距離是 60 千米。問:步行者在出發(fā)后經(jīng)過多少時間與回頭接他們的汽車相遇(汽車掉頭的時間 忽略不計)老師提醒:此類題相當(dāng)于環(huán)形跑道問題,兩者行的總路程為一圈 即 步行者行的總路程汽車行的總路程60× 2解:設(shè)步行者在出發(fā)后經(jīng)過 x 小時與回頭接他們的汽車相遇,則5x60(x1)60×29、一列火車長 150 米,以每秒 15 米的速度通過 600 米的隧道,從火車進入隧道口算起,到這列火車完全通過隧道 所需時間
10、是【 】( A) 60 秒(B) 50 秒( C)40 秒( D) 30 秒老師提醒:將車尾看作一個行者,當(dāng)車尾通過600 米的隧道再加上 150 米的車長時所用的時間,就是所求的完全通過的時間,哈哈!你明白嗎?解:時間 (600 150)÷1550(秒) 選 B。10、某人計劃騎車以每小時 12 千米的速度由 A 地到 B 地,這樣便可在規(guī)定的時間到達 B 地,但他因事將原計劃的 時間推遲了 20 分,便只好以每小時 15 千米的速度前進,結(jié)果比規(guī)定時間早4 分鐘到達 B 地,求 A、B兩地間的距離。解:方法一:設(shè)由 A 地到 B 地規(guī)定的時間是 x 小時,則12x 1520 x6
11、0460方法二:設(shè)由 A、B 兩地的距離是x x 20 412 15 60 60x212 x12×224(千米 )x 千米,則 (設(shè)路程,列時間等式)答: A、 B兩地的距離是 24 千米。x 24溫馨提醒:當(dāng)速度已知,設(shè)時間,列路程等式;設(shè)路程,列時間等式是我們的解題策略。11、甲、乙兩人相距 5 千米,分別以 2千米/時的速度相向而行,同時一只小狗以12 千米/時的速度從甲處奔向乙,遇到乙后立即掉頭奔向甲,遇到甲后又奔向乙直到甲、乙相遇,求小狗所走的路程。注:此為二題合一的題目,即獨立的二人相遇問題和狗兒的獨自奔跑。只是他們的開始與結(jié)束時間是一樣的, 以此為聯(lián)系,使本題頓生情趣,
12、為諸多中小學(xué)資料所采納。12 5 15(千米 )45解:設(shè)甲、乙兩人相遇用 x 時,則 2x2x5x 12x4答:小狗所走的路程是 15 千米。隧道的頂上有一盞燈,垂直向下發(fā)光,燈光照12、一列火車勻速行駛,經(jīng)過一條長300m 的隧道需要 20s 的時間。在火車上的時間是 10s,根據(jù)以上數(shù)據(jù),你能否求出火車的長度?火車的長度是多少?若不能,請說明理由。 老師解析:只要將車尾看作一個行人去分析即可,前者為此人通過 300 米的隧道再加上一個車長,后者僅為此人通過一個車長。 此題中告訴時間,只需設(shè)車長列速度關(guān)系,或者是設(shè)車速列車長關(guān)系等式。x 米,根據(jù)題意,得解:方法一:設(shè)這列火車的長度是x30
13、0答:這列火車長 300 米。300 x xx 米 /秒,根據(jù)題意,得 20x 30010x x30 10x300 答:這列火車長 300 米。13、甲、乙兩地相距 x 千米,一列火車原來從甲地到乙地要用 15 小時,開通高速鐵路后,車速平均每小時比原來 加快了 60 千米,因此從甲地到乙地只需要 10 小時即可到達,列方程得 。 答案:20 10方法二:設(shè)這列火車的速度是xx6010 156x206014、列車在中途受阻,耽誤了 6分鐘,然后將時速由原來的每小時 40 千米提高到每小時 50 千米,問這樣走多少千 米,就可以將耽誤的時間補上?xx 解:設(shè)走 x 千米就補上耽誤的時間,則 x
14、x40 50答:走 20 千米就補上耽誤的時間。100 米,慢車車長 150 米,已知當(dāng)兩車相向而行時,15、兩列火車分別行駛在平行的軌道上,其中快車車長為 快車駛過慢車某個窗口所用的時間為 5 秒。 兩車的速度之和及兩車相向而行時慢車經(jīng)過快車某一窗口所用的時間各是多少? 如果兩車同向而行,慢車速度為 8 米 / 秒,快車從后面追趕慢車,那么從快車的車頭趕上慢車的車尾開始到 快車的車尾離開慢車的車頭所需的時間至少是多少秒?老師解析: 快車駛過慢車某個窗口時:研究的是慢車窗口的人和快車車尾的人的 相遇問題,此時行駛的路程和為快車車長! 慢車駛過快車某個窗口時:研究的是快車窗口的人和慢車車尾的人的
15、 相遇問題,此時行駛的路程和為慢車車長! 快車從后面追趕慢車時:研究的是快車車尾的人追趕慢車車頭的人的 追擊問題,此時行駛的路程和為兩車車長之和!解: 兩車的速度之和 100÷ 5 20 (米 /秒)慢車經(jīng)過快車某一窗口所用的時間 150÷ 207.5(秒) 設(shè)至少是 x 秒,(快車車速為 208)則 ( 208)x 8x100150x62.5答:至少 62.5 秒快車從后面追趕上并全部超過慢車。16、甲、乙兩人同時從 A地前往相距 25.5千米的 B地,甲騎自行車,乙步行,甲的速度比乙的速度的2倍還快 2 千米 /時,甲先到達 B 地后,立即由 B 地返回,在途中遇到乙,
16、這時距他們出發(fā)時已過了3小時。求兩人的速度。解:設(shè)乙的速度是 x 千米 /時,則3x3 (2x2)25.5×2 x52x212答:甲、乙的速度分別是 12千米/時、 5 千米/時。17、一輛汽車上午 10: 00 從安陽出發(fā)勻速行駛,途經(jīng)曲溝、水冶、銅冶三地,時間如下表,地名安陽曲溝銅冶時間10:0010:1511:00水冶在曲溝和銅冶兩地之間,距曲溝 10 千米,距銅冶 20 千米,安陽到水冶的路程有多少千米?解:設(shè)安陽到水冶有 x 千米,則 x 10 x 20 或 x 1010 200.7518、甲騎自行車從 A 地到 B 地, 到上午 10 時,兩人還相距 解:設(shè) A、方法一:
17、B兩地間的路程是x 36 x 36乙騎自行車從 B到 A地,兩人都勻速前進,已知兩人在上午 8時同時出發(fā), 36 千米,到中午 12 時,兩人又相距 36 千米,求 A、B 兩地間的路程。x 千米,則24x3636×2×2方法二:二、環(huán)行跑道與時鐘問題:解,得x 108答: A、B 兩地間的路程是 108 千米。0.25 1 0.25 解,得 x20答:安陽到水冶的路程有 20 千米。1、在 6 點和 7 點之間,什么時刻時鐘的分針和時針重合? 老師解析: 6: 00 時分針指向 12,時針指向 6,此時二針相差 180°, 在6:007:00之間,經(jīng)過 x分鐘當(dāng)
18、二針重合時,時針走了 0.5x°分針走了 6x° 以下按追擊問題可列出方程,不難求解。解:設(shè)經(jīng)過 x 分鐘二針重合,則 6x 1800.5x 解得 x 360 32 811 112、甲、乙兩人在 400 米長的環(huán)形跑道上跑步,甲分鐘跑240 米,乙每分鐘跑 200 米,二人同時同地同向出發(fā),幾分鐘后二人相遇?若背向跑,幾分鐘后相遇?老師提醒:此題為環(huán)形跑道上,同時同地同向的追擊與相遇問題。解: 設(shè)同時同地同向出發(fā) x 分鐘后二人相遇,則240x 200x400x101 設(shè)背向跑, x 分鐘后相遇,則 240x 200x 400x解: 設(shè)分針指向 3 時 x 分時兩針重合。
19、x531x180 x16 41211114答:在 3 時 16 分時兩針重合。11 設(shè)分針指向 3 時 x 分時兩針成平角。x53 1 x60 21x 493、在 3 時和 4 時之間的哪個時刻,時鐘的時針與分針:重合;成平角;成直角;12 11111 答:在 3 時 49 分時兩針成平角。11 設(shè)分針指向 3 時 x 分時兩針成直角。 x 5 3 1 x 60 4 x 32 812 11 8答:在 3 時 32 分時兩針成直角。114、某鐘表每小時比標(biāo)準時間慢 3 分鐘。若在清晨 6 時 30 分與準確時間對準,則當(dāng)天中午該鐘表指示時間x38060(603)6:306:40 13:10為 1
20、2 時 50 分時,準確時間是多少? 解:方法一:設(shè)準確時間經(jīng)過 x 分鐘,則 解得 x400 分 6 時 40 分方法二:設(shè)準確時間經(jīng)過 x時,則 3 x 61 x 12 560 2 6三、行船與飛機飛行問題:1、 一艘船在兩個碼頭之間航行,水流的速度是3千米 /時,順?biāo)叫行枰?2小時,逆水航行需要 3小時,求兩碼頭之間的距離。解:設(shè)船在靜水中的速度是 x 千米 /時,則 3×(x3)2×(x3)解得 x15 2× ( x 3) 2× (15 3) 36(千米)答:兩碼頭之間的距離是36 千米。2、一架飛機飛行在兩個城市之間,風(fēng)速為每小時24 千米,
21、順風(fēng)飛行需要 2小時 50 分鐘,逆風(fēng)飛行需要 3小時,求兩城市間的距離。5解:設(shè)無風(fēng)時的速度是 x千米/時,則 3×(x24)25 ×(x24)63、小明在靜水中劃船的速度為10 千米/時,今往返于某條河,逆水用了9小時,順?biāo)昧?6 小時,求該河的水流速度。解:設(shè)水流速度為x千米/時,則 9(10 x) 6(10 x) 解得 x2 答:水流速度為 2 千米/時.C 碼頭,共行 20 小時,已知船在靜水中的速度 2.5千米/時,若 A與C的距離比 A與 B的距離短 40千米,求 A與 B的距離。 (請你按下面的分類畫出示意圖,來理解所列方程)404、某船從 A 碼頭順流航
22、行到 B碼頭,然后逆流返行到為 7.5 千米 / 時,水流的速度為解:設(shè) A與 B的距離是 x千米, 當(dāng) C在 A、B 之間時,7.5 2.5 7.5 x20 解得2.5x x 40 207.5 2.5x120 當(dāng) C 在 BA的延長線上時,7.5 2.5答:A與 B的距離是 120千米或 56千米。第二類:工程問題 工程問題的基本關(guān)系:工作量 =工作效率×工作時間 ;工作效率 =工作量÷工作時間解得 x56;工作時間注意: 一般情況下把總工作量設(shè)為 1,完成某項任務(wù)的各工作量的和總工作量 1、做某件工作,甲單獨做要 8 小時才能完成,乙單獨做要 12 小時才能完成,=工作
23、量÷工作效率1問:甲做 1 小時完成全部工作量的幾分之幾?乙做 1 小時完成全部工作量的幾分之幾?112甲、乙合做 1 小時完成全部工作量的幾分之幾?118 12甲做 x 小時完成全部工作量的幾分之幾?甲、乙合做 x 小時完成全部工作量的幾分之幾?甲先做 2 小時完成全部工作量的幾分之幾?1x81(1818112)x乙后做 3 小時完成全部工作量的幾分之幾?112甲、乙再合做 x 小時完成全部工作量的幾分之幾?(1812)x三次共完成全部工作量的幾分之幾?2、一項工程,甲單獨做要 10 天完成,乙單獨做要 還需要幾天完成?1212113 ( )x 18 1215 天完成,兩人合做 4
24、 天后,剩下的部分由乙單獨做,結(jié)果完成了工作,則可列出方程:解:設(shè)還需要 x 天完成,依題意,得 ( 1 1 )10 153、食堂存煤若干噸,原來每天燒煤4噸,用去 15 噸后,求原存煤量 .14 x 1 解得 x=515改進設(shè)備,耗煤量改為原來的一半,結(jié)果多燒了答:還需要 5 天完成10 天,解:設(shè)原存煤量為 x 噸,依題意,得 x 15 x 15 10244、一水池,單開進水管 3 小時可將水池注滿,單開出水管時,然后打開出水管,使進水管、出水管一起開放,問再過幾小時可將水池注滿?解得 x=55 答:原存煤量為 55 噸4 小時可將滿池水放完?,F(xiàn)對空水池先打開進水管2小解:設(shè)再過 x小時可
25、將水池注滿,依題意,得 1 2 (1 1)x 1 解得 x=4 答:再過 4 小時可將水池注滿。3 3 45、甲、乙兩個工程隊合做一項工程,乙隊單獨做一天后 ,由甲、乙兩隊合做兩天后就完成了全部工程.已知甲隊單2獨做所需天數(shù)是乙隊單獨做所需天數(shù)的,問甲、乙兩隊單獨做 ,各需多少天 ?32 答:常規(guī)解法:設(shè)乙隊單獨做要x天完成,那么甲隊單獨做要 2 X天完成。由題意得3,由題意得:巧解:設(shè)乙隊每天完成的工作量為x,那么甲隊每天完成的工作量為6、一項工程 300 人共做 ,解:由已知每人每天完成需要 40 天,如果要求提前 10 天完成 ,問需要增多少人 ? 11 ,設(shè)需要增 x 人 ,40 30
26、01x 300 30 1 解得 x=100 40 300答:需要增 100 人則列出方程為11,乙每小時灌池子的 。238、1112152列方程: × 0.5+( + )x= , + x=22334631x= =0.52答:一共需要 1小時。x+0.5=1小時)水池有一個進水管 ,4 小時可以注滿空池5x=6,池底有一個出水管12,6 小時可以放完滿池的水 .如果兩水管同時打開,那7、某工作 ,甲單獨干需用 15 小時完成 ,乙單獨干需用 12 小時完成 ,若甲先干 1 小時、乙又單獨干 4 小時 ,剩下的答:4工作兩人合作 ,問 :再用幾小時可全部完成任務(wù) ?解:設(shè)甲、乙兩個龍頭齊
27、開 x 小時。由已知得,甲每小時灌池子的么經(jīng)過幾小時可把空水池灌滿出水管每小時放水1 解:令水箱為 1,進水管每小時注水,4設(shè)兩水管同時打開 , 經(jīng)過 x 小時可把空水池灌滿11 則由題意列出方程為( ) x=1 , 解得 x=12469、某工廠計劃 26 小時生產(chǎn)一批零件,后因每小時多生產(chǎn) 5 件,用 24 小時,不但完成了任務(wù),而 且還比原計劃多生產(chǎn)了 60 件,問原計劃生產(chǎn)多少零件?X ( 5) 24 60 X , X=78026 10、某工程,甲單獨完成續(xù) 20 天,乙單獨完成續(xù)1 再做幾天可以完成全部工程 ?1 - 6(2012 天,甲乙合干 6 天后,再由乙繼續(xù)完成,乙11)= X
28、 X=2.412 1225 天獨立完成,乙 20 天獨立完成,甲、乙二人合 5 天后,X=1111、已知甲、乙二人合作一項工程,甲甲另有事,乙再單獨做幾天才能完成?1 ( 1 1 )5 1 X25 20 201 1 ab12、 某工人原計劃每天生產(chǎn) a 個零件,現(xiàn)實際每天多生產(chǎn) 完成一項工程甲需要 a 天,乙需要 b 天,則二人合做需要的天數(shù)為 1/( ( ) a b a b b 個零件,則生產(chǎn) m 個零件提前的 天13、14、數(shù)為 ( m m bma a b a(a b))。一個水池安有甲乙丙三個水管,甲單獨開 12h 注滿水池, 如果三管同開,多少小時后剛好把水池注滿水?1 1 1( -
29、) X 1 X=612 8 24 甲、乙兩個水池共蓄水 50t,甲池用去 5t ,乙池又注入 8t 問原來甲、乙兩個水池各有多少噸水?乙單獨開 8h 注滿,丙單獨開 24h 可排掉滿池的水,后,甲池的水比乙池的水少 3t ,X-5+3=50-X+8 X=27 50-27=2315、將一批工業(yè)最新動態(tài)信息輸入管理儲存網(wǎng)絡(luò),甲獨做需分鐘,然后甲、乙一起做,則甲、乙一起做還需多少小時才能完成工作?1 1 11- (6 2 61 114)X , X=5 , 2小時 12分6 小時,乙獨做需 4 小時,甲先做 30二、市場經(jīng)濟問題1.某高校共有 5 個大餐廳和 2 個小餐廳經(jīng)過測試:同時開放 1 個大餐
30、廳、 2 個小餐廳,可供 1680 名學(xué)生就餐; 同時開放 2 個大餐廳、 1個小餐廳,可供 2280 名學(xué)生就餐( 1)求 1 個大餐廳、 1 個小餐廳分別可供多少名學(xué)生就餐;(2)若 7個餐廳同時開放,能否供全校的 5300 名學(xué)生就餐?請說明理由解:(1)設(shè) 1個小餐廳可供 y名學(xué)生就餐,則1個大餐廳可供( 1680-2y)名學(xué)生就餐,根據(jù)題意,得 2(1680-2y) +y=2280 解得: y=360(名)所以 1680-2y=960(名)( 2)因為 960 5 360 2 5520 5300, 所以如果同時開放 7 個餐廳,能夠供全校的 5300 名學(xué)生就餐2.工藝商場按標(biāo)價銷售
31、某種工藝品時,每件可獲利45 元;按標(biāo)價的八五折銷售該工藝品 8 件與將標(biāo)價降低 35 元銷售該工藝品 12 件所獲利潤相等 .該工藝品每件的進價、標(biāo)價分別是多少元?解:設(shè)該工藝品每件的進價是 x 元,標(biāo)價是( 45+x)元 .依題意,得 :8(45+x)× 0.85-8x=( 45+x-35)× 12-12x 解得: x=155(元)所以 45+x=200(元)3. ( 2006·益陽市)八年級三班在召開期末總結(jié)表彰會前,班主任安排班長李小波去商店買獎品,下面是李小波 與售貨員的對話:李小波:阿姨,您好! 售貨員:同學(xué),你好,想買點什么? 李小波:我只有 100
32、 元,請幫我安排買 10 支鋼筆和 15 本筆記本 . 售貨員:好,每支鋼筆比每本筆記本貴 2 元,退你 5 元,請清點好,再見 . 根據(jù)這段對話,你能算出鋼筆和筆記本的單價各是多少嗎?解:設(shè)筆記本每本 x 元,則鋼筆每支為 (x+2)元,據(jù)題意得10 ( x+2) +15x=100-5解得, x=3(元)所以 x+2=5(元)答: (略) .4. 某地區(qū)居民生活用電基本價格為每千瓦時0.40 元,若每月用電量超過 a 千瓦則超過部分按基本電價的 70%收費(1)某戶八月份用電 84 千瓦時,共交電費 30.72 元,求 a(2)若該用戶九月份的平均電費為0.36 元,則九月份共用電多少千瓦?
33、 ?應(yīng)交電費是多少元? 解:( 1)由題意,得 0.4a+(84-a)× 0.40×70%=30.72 解得 a=60(2)設(shè)九月份共用電 x 千瓦時, 0.40× 60+( x-60)× 0.40×70%=0.36x 解得 x=90 所以 0.36×90=32.40(元)答: 90千瓦時,交 32.40 元5. 某家電商場計劃用 9 萬元從生產(chǎn)廠家購進 50 臺電視機已知該廠家生產(chǎn) 3?種不同型號的電視機,出廠價分別 為 A 種每臺 1500 元, B 種每臺 2100 元, C 種每臺 2500 元(1)若家電商場同時購進兩種不同
34、型號的電視機共50臺,用去 9 萬元,請你研究一下商場的進貨方案(2)若商場銷售一臺 A 種電視機可獲利 150 元,銷售一臺 B種電視機可獲利 200 元, ?銷售一臺 C種電視機 可獲利 250 元,在同時購進兩種不同型號的電視機方案中,為了使銷售時獲利最多,你選擇哪種方案?解:按購 A, B兩種, B, C兩種, A, C兩種電視機這三種方案分別計算,設(shè)購 A 種電視機 x 臺,則 B 種電視機 y 臺1)當(dāng)選購 A, B 兩種電視機時,B 種電視機購( 50-x)臺,可得方程1500x+210050-x)=90000x=25 50-x=25當(dāng)選購 A,C 兩種電視機時,C 種電視機購(
35、 50-x)臺,可得方程1500x+250050-x)=90000x=35 50-x=15當(dāng)購 B, C 兩種電視機時, C 種電視機為( 50-y)臺可得方程2100y+2500(50-y)=900004y=350 ,不合題意可選兩種方案:一是購 A,B兩種電視機 25臺;二是購 A種電視機 35臺, C種電視機 15 臺2)若選擇( 1),可獲利 150× 25+250×15=8750(元)若選擇( 1),可獲利 150× 35+250× 15=9000(元) 故為了獲利最多,選擇第二種方案60 元,八折出售后,商家6. 某商店開張為吸引顧客,所有商
36、品一律按八折優(yōu)惠出售,已知某種旅游鞋每雙進價為所獲利潤率為 40%。問這種鞋的標(biāo)價是多少元?優(yōu)惠價是多少?利潤率 = 利潤成本40%=80%X 6060X=105 105*80%=84 元7. 某產(chǎn)品按原價提高40%后打八折銷售,每件商品賺270 元,問該商品原標(biāo)價多少元?現(xiàn)銷售價是多少?X(1+40%)80% - X=270X=22502250(1+40%)80%=2520 元8. 甲乙兩件衣服的成本共 500 元,商店老板為獲取利潤,決定將家服裝按50%的利潤定價,乙服裝按 40%的利潤定價,在實際銷售時,應(yīng)顧客要求,兩件服裝均按 9 折出售,這樣商店共獲利 157 元,求甲乙兩件服裝成本
37、 各是多少元? 甲 X 乙 50 X109X(1+50%) X+(500-X)(1+40%)90% - (500 - X)=157 X=300 某文藝團體組織了一場義演為“希望工程”募捐,共售出 1000 張門票,已知成人票每張 8 元,學(xué)生票每張 5 元, 共得票款 6950 元,成人票和學(xué)生票各幾張?8X+5(1000-X)=6950 X=650 1000-650=350利潤問題利潤問題的基本關(guān)系:獲利 =售價進價打幾折就是原價的十分之幾 1 某商場按定價銷售某種電器時,每臺獲利 48 元,按定價的 9 折銷售該電器 6 臺與將定價降低 30 元銷售該電器 9臺所獲得的利潤相等,該電器每臺
38、進價、定價各是多少元?(48+X)90%*6 6X=(48+X-30)*9 9X X=162 162+48=2102、甲、乙兩種商品的單價之和為 100 元,因為季節(jié)變化,甲商品降價 10%,乙商品提價 5%,調(diào)價后,甲、乙兩商 品的單價之和比原計劃之和提高 2%,求甲、乙兩種商品的原來單價?x(1-10%)+(100-x)(1+5%)=100(1+2%) x=20四、分配問題1 某車間有 16 名工人,每人每天可加工甲種零件 5 個或乙種零件 4 個在這 16 名工人中,一部分人加工甲種 零件,其余的加工乙種零件 ?已知每加工一個甲種零件可獲利16 元,每加工一個乙種零件可獲利 24 元若此
39、車間一共獲利 1440 元, ?求這一天有幾個工人加工甲種零件解:設(shè)這一天有 x 名工人加工甲種零件,則這天加工甲種零件有 5x 個,乙種零件有 4( 16-x)個根據(jù)題意,得 16× 5x+24×4(16-x) =1440解得 x=62 有兩個工程隊,甲工程隊有 32 人,乙工程隊有 28 人,如果是甲工程隊的人數(shù)是工程隊人數(shù)的2 倍,需從乙工程隊抽調(diào)多少人到甲工程隊?32+X=(28-X)*2 X=83 某班同學(xué)利用假期參加夏令營活動,分成幾個小組,若每組 7 人還余 1 人,若每組 8 人還缺 6 人,問該班分 成幾個小組,共有多少名同學(xué)?7X+1=8X-6 X=74
40、. 將一個裝滿水的內(nèi)部長、寬、高分別為 300 毫米, 300 毫米和 80?毫米的長方體鐵盒中的水,倒入一個內(nèi)徑為 200 毫米的圓柱形水桶中,正好倒?jié)M,求圓柱形水桶的高(精確到0.1 毫米, 3.14)解:設(shè)圓柱形水桶的高為 x 毫米,得·( 200 ) 2x=300×300×80 x229.325 有某種三色冰淇淋 50 克,咖啡色、紅色和白色配料的比是2:3:5, ?這種三色冰淇淋中咖啡色、紅色和白色配料分別是多少克?解:設(shè)這種三色冰淇淋中咖啡色配料為 2x 克, 那么紅色和白色配料分別為 3x 克和 5x 克根據(jù)題意,得 2x+3x+5x=50 得 x=
41、5 于是 2x=10,3x=15, 5x=25五、數(shù)字問題數(shù)字問題的基本關(guān)系:數(shù)字和數(shù)是不同的,同一個數(shù)字在不同數(shù)位上,表示的數(shù)值不同 .1 一個兩位數(shù),個位數(shù)字比十位數(shù)字小1,這個兩位數(shù)的個位十位互換后,它們的和是33 ,求這個兩位數(shù) .10(X+1)+X+10X+X+1+33 x=1 為 212 已知三個連續(xù)偶數(shù)的和是 2004 ,求這三個偶數(shù)各是多少? X+2+X+X-2=2004 x=668 666 668 670 年齡問題(1)某同學(xué)今年 15歲,他爸爸今年 39歲,問幾年以后, 爸爸的年齡是這位同學(xué)年齡的 2倍? (15+x)*2=39+x x=9(2) 三位 同學(xué)甲乙 丙,甲 比
42、 乙大 1 歲,乙 比丙大 2 歲,三人 的年齡 之和為 41,求乙 同學(xué)的 年齡 .x+1+x+x-2=41 x=14( 3)今年哥倆的歲數(shù)加起來是 55 歲。曾經(jīng)有一年,哥哥的歲數(shù)與今年弟弟的歲數(shù)相同,那時哥哥的歲數(shù)恰好是弟 弟歲數(shù)的兩倍 .哥哥今年幾歲?曾經(jīng):哥哥 弟弟曾經(jīng):哥哥 弟弟XXXX22X 今年: X+X X今年: 55-XX2XX+X +X =55X=22X55-x-x= X-XX=2222(4)兄弟二人今年分別為 15歲和 9歲,多少年后兄的年齡是弟的年齡的2 倍?解:設(shè) x 年后,兄的年齡是弟的年齡的 2 倍,則 x 年后兄的年齡是 15+x ,弟的年齡是 9+x由題意,
43、得 2×( 9+x) =15+x 18+2x=15+x, 2x-x=15-18 x=-3答:3 年前兄的年齡是弟的年齡的 2倍(點撥: -3 年的意義,并不是沒有意義,而是指以今年為起點前的 3 年,是與 3?年后具有相反意義的量) (一)和、差、倍、分問題讀題分析法這類問題主要應(yīng)搞清各量之間的關(guān)系,注意關(guān)鍵詞語。仔細讀題,找出表示相等關(guān)系的關(guān)鍵字, 例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套” ,利用這些關(guān)鍵字列出 文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程 .1、倍數(shù)關(guān)系:通過關(guān)鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百
44、分之幾,增長率”來體現(xiàn)。2、多少關(guān)系:通過關(guān)鍵詞語“多、少、和、差、不足、剩余”來體現(xiàn)。增長量原有量 ×增長率 現(xiàn)在量原有量增長量例 1某單位今年為災(zāi)區(qū)捐款 2 萬 5 千元,比去年的 2 倍還多 1000 元,去年該單位為災(zāi)區(qū)捐款多少元?例 2旅行社的一輛汽車在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的 40%,這樣油箱中剩的汽油比兩次所用的汽油少 1 公斤,求油箱里原有汽油多少公斤?(二)等積變形問題等積變形是以形狀改變而體積不變?yōu)榍疤?。常用等量關(guān)系為:原料體積 =成品體積。常見幾何圖形的面積、體積、周長計算公式,依據(jù)形雖變, 但體積不變2圓柱體的體積公式V=
45、底面積 ×高 S·h r h長方體的體積V長 ×寬×高 abc例 3現(xiàn)有直徑為 0.8 米的圓柱形鋼坯 30 米,可足夠鍛造直徑為 0.4 米,長為 3 米的圓柱形機軸多少 根?三)數(shù)字問題1.要搞清楚數(shù)的表示方法:一個三位數(shù),一般可設(shè)百位數(shù)字為a,十位數(shù)字是 b,個位數(shù)字為 c(其中 a、b、c 均為整數(shù),且 1a9, 0b 9, 0c9),則這個三位數(shù)表示為: 100a+10b+c2.數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用 2n 表示,連續(xù)的偶數(shù)用 2n+2或 2n-2 表示;奇數(shù)用 2n+1或 2n1 表示。例 4有
46、一個三位數(shù),個位數(shù)字為百位數(shù)字的 2 倍,十位數(shù)字比百位數(shù)字大 1 ,若將此數(shù)個位與百位 順序?qū)φ{(diào)(個位變百位)所得的新數(shù)比原數(shù)的2 倍少 49,求原數(shù)。例 5一個 2 位數(shù),個位上的數(shù)字比十位上的數(shù)字大 5,且個位上的數(shù)字與十位上的數(shù)字的和比這個2 位數(shù)的大 6 ,求這個 2 位數(shù)。 (四)商品利潤問題(市場經(jīng)濟問題或利潤贏虧問題)(1)銷售問題中常出現(xiàn)的量有:進價 (或成本 )、售價、標(biāo)價(或定價) 、利潤等。(2)利潤問題常用等量關(guān)系:商品利潤商品售價商品進價商品標(biāo)價×折扣率商品進價商品利潤 商品售價商品進價商品利潤率商品進價×100%商品進價× 100%(
47、 3)商品銷售額商品銷售價 ×商品銷售量 商品的銷售利潤(銷售價成本價) × 銷售量(4)商品打幾折出售,就是按原標(biāo)價的百分之幾十出售,如商品打8 折出售,即按原標(biāo)價的 80%出售即商品售價 =商品標(biāo)價×折扣率例 5:一家商店將某種服裝按進價提高 40%后標(biāo)價,又以 8 折優(yōu)惠賣出,結(jié)果每件仍獲利 15 元,這 種服裝每件的進價是多少?(五)行程問題畫圖分析法 利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖 形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利 用量與量之間的關(guān)系(可把未
48、知數(shù)看做已知量) ,填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ) .1.行程問題中的三個基本量及其關(guān)系: 路程速度×時間 時間路程÷速度 速度路程÷時間 2.行程問題基本類型( 1)相遇問題: 快行距慢行距原距( 2)追及問題: 快行距慢行距原距(3)航行問題:順?biāo)L(fēng))速度靜水(風(fēng))速度水流(風(fēng))速度 逆水(風(fēng))速度靜水(風(fēng))速度水流(風(fēng))速度 水流速度 =(順?biāo)俣?-逆水速度)÷ 2抓住兩碼頭間距離不變,水流速和船速(靜不速)不變的特點考慮相等關(guān)系即順?biāo)嫠畣栴}常用 等量關(guān)系:順?biāo)烦?=逆水路程常見的還有:相背而行;行船問題;環(huán)形跑道問題。例 6:甲、乙兩站
49、相距 480 公里,一列慢車從甲站開出,每小時行 90 公里,一列快車從乙站開出, 每小時行 140 公里。( 1)慢車先開出 1 小時,快車再開。兩車相向而行。問快車開出多少小時后兩車相遇 ? (2)兩車同時開出,相背而行多少小時后兩車相距600 公里?( 3)兩車同時開出,慢車在快車后面同向而行,多少小時后快車與慢車相距600 公里?(4)兩車同時開出同向而行,快車在慢車的后面,多少小時后快車追上慢車?(5)慢車開出 1 小時后兩車同向而行,快車在慢車后面,快車開出后多少小時追上慢車?(此題關(guān)鍵是要理解清楚相向、相背、同向等的含義,弄清行駛過程。 )例 7: 一艘船在兩個碼頭之間航行,水流
50、速度是 3 千米每小時,順?biāo)叫行枰?2 小時,逆水航行需 要3 小時,求兩碼頭的之間的距離?六)工程問題1工程問題中的三個量及其關(guān)系為:工作效率工作總量工作效率 ×工作時間工作總量 工作時間工作時間工作總量工作效率2經(jīng)常在題目中未給出工作總量時,設(shè)工作總量為單位1。即完成某項任務(wù)的各工作量的和總工作量 1工程問題常用等量關(guān)系:先做的 +后做的 =完成量例 9:一件工程,甲獨做需 15 天完成,乙獨做需 12 天完成,現(xiàn)先由甲、乙合作 3 天后,甲有其他任 務(wù),剩下工程由乙單獨完成,問乙還要幾天才能完成全部工程?例 10 :一個蓄水池有甲、乙兩個進水管和一個丙排水管,單獨開甲管6 小時可注滿水池;單獨開乙 管 8 小時可注滿水池,單獨開丙管 9 小時可將滿池水排空,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度園林景觀用樹木租賃合同模板
- 高速公路防護工程勞務(wù)合同(3篇)
- 2025年個人住宅裝修工程協(xié)議書
- 2025年礦權(quán)開采許可協(xié)議策劃范本
- 2025年企業(yè)整體并購協(xié)議書
- 2025年資產(chǎn)重置策劃諒解協(xié)議細則
- 2025年分手策劃協(xié)議書范本
- 2025年高速精密電主軸項目規(guī)劃申請報告模范
- 2025年策劃授權(quán)協(xié)議范本正式版
- 2025年個人租賃私家車合同樣式
- 醫(yī)療器械市場規(guī)劃
- 安徽省合肥市廬陽區(qū)評價2023-2024學(xué)年六年級下學(xué)期小升初數(shù)學(xué)模擬試卷+
- 2024年3月山東省直監(jiān)獄類面試題及參考答案全套
- 新產(chǎn)品研發(fā)工作總結(jié)匯報
- pi粉末成型工藝
- Optix-OSN3500智能化光傳輸設(shè)備業(yè)務(wù)配置手冊范本
- swagelok管接頭安裝培訓(xùn)教程
- 公墓管理考核方案
- 把子肉店創(chuàng)業(yè)計劃書
- 綜合樓裝修改造項目 投標(biāo)方案(技術(shù)方案)
- 冀教版五年級上冊英語全冊單元測試卷(含期中期末試卷及聽力音頻)
評論
0/150
提交評論