水電機組故障診斷的集成知識表示與推理_第1頁
水電機組故障診斷的集成知識表示與推理_第2頁
水電機組故障診斷的集成知識表示與推理_第3頁
水電機組故障診斷的集成知識表示與推理_第4頁
水電機組故障診斷的集成知識表示與推理_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、水電機組故障診斷的集成知識表示與推理    abstract:in consideration of the diversity and the complication of fault diagnosis knowledge for hydroelectric set, a new metasynthesizing knowledge-representation using neural network, fuzzy rules and visualized technique is proposed. and on the basis of th

2、e knowledge representation, an integrated reasoning method is completed. a vibration fault diagnosing example is given to demonstrate that the abilities of acquiring and representing knowledge and the inferring efficiency of hydroelectric set's fault diagnosis can be reasonably improved.key word

3、s:hydraulic engineering; fault diagnosis; knowledge representation 1引言 水電機組設(shè)備龐大、結(jié)構(gòu)復(fù)雜、誘發(fā)故障的原因很多。其常見故障有:機組軸承故障;機組振動故障(根據(jù)振動誘發(fā)原因,水電機組振動大致可分為機械振動、水力振動、電氣振動);水輪機汽蝕與泥沙磨損;水輪發(fā)電機故障。確立恰當(dāng)?shù)闹R表示和推理方式是研制一個故障診斷專家系統(tǒng)的良好基礎(chǔ)。迄今為止,設(shè)備故障診斷知識的表示多采用產(chǎn)生式規(guī)則,但對大型機組而言,大量診斷知識難以歸納為規(guī)則。實踐證明1純粹使用產(chǎn)生式規(guī)則表示法描述故障診斷的知識遠(yuǎn)不足以反映引起機組故障原因的全部征兆。近年

4、來,人們提出了一些將規(guī)則和神經(jīng)網(wǎng)絡(luò)集成表示的方法13,這些方法大多是在規(guī)則庫的基礎(chǔ)上將規(guī)則轉(zhuǎn)化為網(wǎng)絡(luò)表示,對于實時性要求較高、診斷規(guī)則較少和推理策略相對穩(wěn)定的診斷系統(tǒng)具有一定的優(yōu)勢。然而,對于包含水、機、電等多方面因素的高度復(fù)雜的水電系統(tǒng),上述集成方法也暴露出復(fù)雜故障診斷困難、知識庫的開放性和透明度較低、人機交互能力差等方面的不足。為充分滿足水電機組故障診斷知識的多樣性和復(fù)雜性對知識表示的要求,本文提出適用于水電系統(tǒng)故障診斷的知識表示方法。利用產(chǎn)生式模糊規(guī)則表示、可視化故障知識表示及神經(jīng)網(wǎng)絡(luò)表示等多種方法綜合集成的知識表示方法,應(yīng)用于某水電廠水電機組故障診斷專家系統(tǒng)實踐中,取得了良好效果。 2

5、集成知識表示方式 2.1產(chǎn)生式模糊規(guī)則表示法 將水電機組故障診斷領(lǐng)域?qū)<壹跋嚓P(guān)書籍中能用自然語言描述的普通診斷知識歸納為模糊規(guī)則,置信度由領(lǐng)域?qū)<医o出,典型振動故障規(guī)則如若0且ffn(1) 則“定子橢圓度大”,規(guī)則置信度為0.8(一般取值范圍為01)式中az為振動幅值;if為勵磁電流;f為振動頻率;fn為轉(zhuǎn)速頻率。規(guī)則中出現(xiàn)的導(dǎo)數(shù)則反映了振動與各狀態(tài)量之間的相互關(guān)系。為了獲得導(dǎo)數(shù)關(guān)系,可用式(2)近似計算一時間序列的離散采樣數(shù)據(jù) (2) 式中yiyiyi1,xixixi1,取算術(shù)平均值可有效地減小采樣信號的測量噪音干擾。根據(jù)機組故障特點,將診斷規(guī)則劃分為多個相對獨立的規(guī)則子集,形成各類規(guī)則庫,

6、以分類處理較為簡單的單一故障,如可將振動故障規(guī)則劃分為電氣振動類規(guī)則庫、機械振動類規(guī)則庫和水力振動類規(guī)則庫。此外,將相互耦合較強的規(guī)則單獨成庫,以處理較為復(fù)雜的多重故障。再在分類規(guī)則庫中對規(guī)則進行分層組織。對規(guī)則庫進行分類分層組織,能減少推理搜索空間,提高推理效率,同時亦有利于實現(xiàn)對規(guī)則庫的增減和修改,提高系統(tǒng)的開放性和透明度。 2.2可視化故障知識表示法 人類知識積累的過程一般是從圖形和圖像開始,并逐漸走向抽象。隨著計算機技術(shù)的發(fā)展,使得我們可以采用圖表、聲音、圖像作為知識的載體,即可視化知識表示。一般來說,一個水電廠的故障記錄大多為某些常見故障記錄,其故障記錄以文字、數(shù)據(jù)、圖表、曲線、照片

7、、錄像等多種形式組成。傳統(tǒng)知識表示方法僅適用于利用文字和數(shù)據(jù)方面的知識信息,而在聲音和圖像等方面知識信息的處理上卻表現(xiàn)出明顯不足,可視化知識表示方法的引入為表示和利用這些知識信息提供了條件。本文通過對典型故障的歷史記錄中有關(guān)聲音和圖像部分的信息進行整理、剪輯和壓縮處理,形成大量后綴名為mov、avi、wav等多媒體文件,以實現(xiàn)可視化故障知識表示。然后,針對每一個典型故障設(shè)計一個dll(動態(tài)鏈接庫)文件,每一個dll設(shè)置一個入口指針以便于外部的故障診斷專家系統(tǒng)主程序利用api函數(shù)進行調(diào)用。關(guān)于某一個典型故障的各種多媒體文件可看作為隸屬該典型故障dll文件的資源文件,多媒體文件的調(diào)用則通過ole(

8、對象的嵌入和鏈接)方法在dll內(nèi)部的交互式窗口中實現(xiàn)。至此,我們通過利用動態(tài)鏈接的方法和多媒體技術(shù),為電廠中典型故障設(shè)計了一個可視化的典型案例庫。實際上,多媒體文件通常比較龐大(以wav聲音文件為例,一個可播放10s的錄音文件約有1mb),ole和dll方式的引入有利于發(fā)揮windows高級編程的優(yōu)勢,避免可視化文件占用內(nèi)存過大的缺點,提高專家系統(tǒng)的整體運行速度,滿足診斷實時性的要求,確??梢暬R表示在實際系統(tǒng)中得以實現(xiàn)??梢暬收现R表示的引入既有利于增強整個系統(tǒng)知識的表達能力,又為專家系統(tǒng)提供了更為直觀、形象、方便的解釋方式,同時也為用戶培訓(xùn)和實習(xí)提供了一條良好的途徑。 2.3神經(jīng)網(wǎng)絡(luò)知

9、識表示法 傳統(tǒng)知識表示方式,如框架、規(guī)則和劇本等表示方式都只能處理類似人類自然語言的邏輯量,并不擅長表示大量的、多路的、數(shù)值性的變量,而水電廠中許多諸如振動、溫度、流量、水頭、效率、尾水脈動、電流和功率等變量的記錄往往是進行下一次診斷的極為有用的知識信息。因此,如何對這些知識信息進行恰當(dāng)?shù)乇硎竞屯评硪恢笔抢_傳統(tǒng)故障診斷專家系統(tǒng)的一個主要難題。神經(jīng)網(wǎng)絡(luò)的引入為解決以上難題提供了一個有力的工具。本文選擇bp(back propagation)和pnn(probabilistic neural network)前饋模型作為水電機組數(shù)值性知識的載體和指示故障分類的故障分類器。bp網(wǎng)絡(luò)是一種已成功獲得

10、廣泛應(yīng)用的ann前饋模型,其訓(xùn)練方法是典型的外監(jiān)督 (outer-supervised) 學(xué)習(xí)??梢宰C明4,即使在模式空間中各樣本分布相交錯的復(fù)雜區(qū)域內(nèi),亦只需三層bp前饋網(wǎng)絡(luò)就可構(gòu)成任意復(fù)雜的故障分類判別映射?,F(xiàn)采用三層bp網(wǎng)絡(luò)作為可視化典型案例庫的故障分類器,其輸入節(jié)點數(shù)等于經(jīng)過信號預(yù)處理后的故障特征個數(shù)n,隱層節(jié)點數(shù)視訓(xùn)練的具體情況決定,輸出節(jié)點數(shù)等于典型案例庫中的故障個數(shù)k。每一個典型故障對應(yīng)一個k維導(dǎo)出矢量ui ui(0,0,1i,0,0)ik(3) pnn又稱為概率神經(jīng)網(wǎng)絡(luò),其訓(xùn)練方法是典型的自監(jiān)督(self-supervised)學(xué)習(xí),該模型特別適用于分屬各個模式的訓(xùn)練樣本較少,

11、樣本的分類模式屬性已知的情況,因此該模型被我們選為類規(guī)則庫的模式識別分類器,以盡可能全面地覆蓋整個故障集。用于模式識別的pnn,輸出層的輸出為模式樣本后驗概率估計的充要條件是隱層單元函數(shù)為parzen窗密度核函數(shù)4。令x為任一隨機輸入向量,為某一故障模式的訓(xùn)練樣本,如果將x、xi都?xì)w一化成單位矢量,則pnn的第i個節(jié)點的輸出yi可以表示為 (4) 式中hi為pnn中第i個類別對應(yīng)的隱節(jié)點數(shù);k(。)為parzen窗密度核函數(shù);為平滑參數(shù);wi表示第i個需要分類的模式集合;p(x/wi)為輸入矢量的類條件概率。如果有m個故障模式類別, pnn就有m個輸出節(jié)點,由式(4)可知,網(wǎng)絡(luò)的隱層單元數(shù)正好

12、等于參加訓(xùn)練的總樣本數(shù),輸出yi的結(jié)果即為隨機輸入矢量的類條件概率。pnn無需訓(xùn)練,網(wǎng)絡(luò)能根據(jù)每次輸入樣本的特性,由類別屬性標(biāo)記進行自監(jiān)督,不斷調(diào)整網(wǎng)絡(luò)的連接權(quán)值,直至達到精度要求,所以,pnn能夠滿足訓(xùn)練的實時處理要求。筆者曾嘗試直接用機組歷史故障記錄中的時序數(shù)據(jù)對多種神經(jīng)網(wǎng)絡(luò)模型進行訓(xùn)練,訓(xùn)練結(jié)果均不理想,以某水電廠的某一機組的水輪機振動監(jiān)測系統(tǒng)為例,非電量監(jiān)測量(振動、擺度、導(dǎo)葉行程、水壓等)就有19路信號,用多層bp網(wǎng)絡(luò)和自組織映射網(wǎng)絡(luò)kohonen模型對上述監(jiān)測量直接進行故障特征提取,均無法滿足收斂性要求。因此在實際運用中,采用信號處理方法(如濾波、fft、wavelet分析等)對表

13、征機組狀態(tài)的故障數(shù)據(jù)進行預(yù)處理和故障特征初步提取,然后再將預(yù)處理后提取的特征量作為神經(jīng)網(wǎng)絡(luò)的輸入。以振動故障診斷為例,首先對振動采樣信號進行了濾波處理,然后對其進行fft分析,最后再將振動信號的頻譜作為pnn分類器的訓(xùn)練樣本,表1和表2列出了振動故障pnn分類器所用的部分訓(xùn)練樣本和測試樣本。經(jīng)過信號預(yù)處理后,神經(jīng)網(wǎng)絡(luò)的輸入節(jié)點數(shù)大量減少,收斂能力明顯增強。由表2可見,訓(xùn)練后的pnn對訓(xùn)練樣本和測試樣本都能較好地識別。應(yīng)該指出,神經(jīng)網(wǎng)絡(luò)的分類和辯識能力取決于網(wǎng)絡(luò)的學(xué)習(xí)水平,而僅僅依靠電廠的歷史故障記錄進行訓(xùn)練是很難完全覆蓋整個故障集的,應(yīng)不斷用新的故障樣本對神經(jīng)網(wǎng)絡(luò)進行訓(xùn)練更新。 表1振動故障p

14、nn分類器采用的部分樣本和測試樣本的輸入量tab.1a portion of input array of training and testing patterns of pnn    編號 樣本類型 f/(26) f 2f pf zf 50 hz 100 hz 2(k1)f 固有頻率    1 訓(xùn)練樣本 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00    2 訓(xùn)練樣本 1.00 0.00 0.00 0.00 0.00 0.00

15、0.00 0.00 0.00    3 訓(xùn)練樣本 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00    4 訓(xùn)練樣本 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00    5 測試樣本 0.75 0.13 0.00 0.08 0.02 0.00 0.03 0.00 0.03    表2振動故障pnn分類器采用的部分樣本和測試樣本的輸出量tab.2a po

16、rtion of output array of training and testing patterns of pnn    編號 樣本類型 訓(xùn) 練 之 前 訓(xùn) 練 之 后    正常狀態(tài) 電磁故障 水力故障 機械故障 正常狀態(tài) 電磁故障 水力故障 機械故障    1 訓(xùn)練樣本 1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00    2 訓(xùn)練樣本 0.10 0.10 0.90 0.10 0.10 0.1

17、0 0.90 0.10    3 訓(xùn)練樣本 0.10 0.50 0.40 0.60 0.10 0.50 0.40 0.60    4 訓(xùn)練樣本 0.10 0.10 0.10 0.90 0.10 0.10 0.11 0.90    5 測試樣本 0.25 0.15 0.65 0.05 0.25 0.15 0.65 0.0533其它國家和地區(qū)的發(fā)展進程     目前,歐洲的燃料電池發(fā)電技術(shù)遠(yuǎn)遠(yuǎn)落后于美國和日本。80歐洲又重新開始研究燃料電池發(fā)電技術(shù)。

18、它們采用向美國、日本購買電池組,自行組裝發(fā)電廠的方式來發(fā)展PAFC發(fā)電技術(shù)。1990年成立了一個“歐洲燃料電池集團(EFCG)”。意大利已完成了一座1MW的PAFC示范工程,由IFC供應(yīng),BOP由歐洲制造。意大利、西班牙與美國IPC合作,于1993年在米蘭建了一座l00kw MCFC電廠,1996年投運。德國正在開發(fā)250kw MCFC。德國西門 子公司于1998年收購了美國西屋公司的管形SOFC技術(shù)后,現(xiàn)在擁有世界上最先進的平板型和管形SOFC技術(shù)。     加拿大在PEFC方面居世界領(lǐng)先地位,在繼續(xù)開發(fā)交通用PEFC的同時,目前也將PEFC應(yīng)用于固定電站,已建

19、成250kw PEFC示范電站,目標(biāo)是在近幾年內(nèi)使250kw級PEPC商業(yè)化。澳大利亞在1993年一1997年,共投資3000萬美元,研究開發(fā)平板型SOFC,目前正在開發(fā)(20一25)kw SOFC電池堆。韓國電力公司于1993年從日本購進一座200kw PAFC進行示范運行。 34 國外發(fā)展燃料電池發(fā)電技術(shù)的經(jīng)驗總結(jié)     回顧國外燃料電地發(fā)展的道路,有許多值得我們吸取和借鑒的經(jīng)驗。下面歸納幾點:    美國在燃料電池發(fā)電技術(shù)的研究開發(fā)方面始終處于世界領(lǐng)先地位。除了雄厚的財力之外,還有三方面重要的原因:一是政府將燃料電池

20、發(fā)電技術(shù)視為提高火力發(fā)電效率、減少污染物和溫室氣體排放的重要措施,列入政府的“改變氣侯技術(shù)戰(zhàn)略”中,并大力投入資金和力量研究開發(fā);二是燃料電池技術(shù)提高到“國家能源安全并大力投入資金和力量研究開發(fā);二是將燃料電池技術(shù)提高到“國家能源安全關(guān)鍵技術(shù)”的戰(zhàn)略高度,DOD和DOE均投入資金研究開發(fā);三是對燃料電池的應(yīng)用前景充滿信心,希望能形成新的高技術(shù)產(chǎn)業(yè),給美國的經(jīng)濟注入新的活力,政府和企業(yè)共同投入資金研究開發(fā),力圖保持領(lǐng)先地位。    日本走的是一條通過與美國合作、引進技術(shù)并消化吸收實現(xiàn)產(chǎn)業(yè)化的路線,并在PAFC的商業(yè)化方面己超過了美國,在MCFC的研究開發(fā)方

21、面也接近美國。成功的重要經(jīng)驗也是政府對燃料電池給予高度重視,先后列入了“月光計劃”和“新陽光計 劃”,大力投入研究開發(fā)。另一條經(jīng)驗是研究機構(gòu)、企業(yè)和用戶聯(lián)合,組成從研究、開發(fā)到商業(yè)應(yīng)用一體化集團,既承擔(dān)研究開發(fā)的風(fēng)險,也享受成功的優(yōu)惠。    加拿大Ballard公司在PEFC方面成功的經(jīng)驗告訴我們:只要堅定不移地進行研究開發(fā),一個小公司也能在10-20年內(nèi)成為舉世矚目的燃料電池技術(shù)擁有者。    燃料電池起源于歐洲,但是,現(xiàn)在歐洲的燃料電池技術(shù)已遠(yuǎn)遠(yuǎn)落后于美國和日本。主要原因是政府和企業(yè)對燃料電池發(fā)電技術(shù)重視不夠

22、。目前,歐洲已經(jīng)意識到這一點,成立了-個燃料電池發(fā)電技術(shù)集團,引進美國、日本的技術(shù),并進行研究開發(fā)。 4 各種燃料電池發(fā)電技術(shù)綜合比較 (1)AFC:與其它燃料電池相比,AFC功率密度和比功率較高,性能可靠。但它要以純氫做燃料,純氧做氧化劑,必須使用Pt、Au、Ag等貴金屬做催化劑,價格昂貴。電解質(zhì)的腐蝕嚴(yán)重,壽命較短,這些特點決定了AFC僅限于航天或軍事應(yīng)用,不適合于民用。 (2)PAFC:以磷酸做為電解質(zhì),可容許燃料氣和空氣中C02的存在。這使得PAFC成為最早在地面上應(yīng)用或民用的燃料電池。與AFC相比它可以在180一210運行,燃料氣和空氣的處理系統(tǒng)大大簡化,加壓運行時,可組成熱電聯(lián)產(chǎn)。

23、但是,PAFC的發(fā)電效率目前僅能達到40一45(LHV),它需要貴金屬鉑做電催化劑;燃料必須外重整:而且,燃料氣中C0的濃度必須小于1(175)一2%(200),否則會使催化劑中毒;酸性電解液的腐蝕作用,使PAFC的壽命難以超過40000小時。PAFC目前的技術(shù)已成熟,產(chǎn)品也進入商業(yè)化,做為特殊用戶的分散式電源、現(xiàn)場可移動電源和備用電源,PAFC還有市場,但用作大容量集中發(fā)電站比較困難。 (3)MCFC:在650一700運行,可采用鎳做電催化劑,而不必使用貴重金屬:燃料可實現(xiàn)內(nèi)重整,使發(fā)電效率提高,系統(tǒng)簡化;CO可直接用作燃料;余熱的溫度較高,可組成燃?xì)庹羝?lián)合循環(huán),使發(fā)電容量和發(fā)電效率進一步

24、提高。與SOFC相比,MCFC的優(yōu)點是:操作溫度較低,可使用價格較低的金屬材料,電極、隔膜、雙極板的制造工藝簡單,密封和組裝的技術(shù)難度相對較小,大容量化容易,造價較低。缺點是:必須配置C02循環(huán)系統(tǒng);要求燃料氣中H2S和CO小于0.5PPM;熔融碳酸鹽具有腐蝕性,而且易揮發(fā);與SOFC相比,壽命較短;組成聯(lián)合循環(huán)發(fā)電的效率比SOFC低。與低溫燃料電池相比,MCFC的缺點是啟動時間較長,不適合作備用電源。MCFC己接近商業(yè)化,示范電站的規(guī)模已達到2MW。從MCFC的技術(shù)特點和發(fā)展趨勢看,MCFC是將來民用發(fā)電(分散電源和中心電站)的理想選擇之一。 (4)SOFC:電解質(zhì)是固體,可以被做成管形、板

25、形或整體形。與液體電解質(zhì)的燃料電池(AFC、PAFC和MCFC)相比,SOFC避免了電解質(zhì)蒸發(fā)和電池材料的腐蝕問題,電池的壽命較長(已達到70000小時)。CO可做為燃料,使燃料電池以煤氣為燃料成為可能。SOFC的運行溫度在1000左右,燃料可以在電池內(nèi)進行重整。由于運行溫度很高,要解決金屬與陶瓷材料之間的密封也很困難。與低溫燃料電池相比,SOFC的啟動時間較長,不適合作應(yīng)急電源。與MCFC相比,SOFC組成聯(lián)合循環(huán)的效率更高,壽命更長(可大于40000小時);但SOFC面臨技術(shù)難度較大,價格可能比MCFC高。示范業(yè)績證明SOFC是未來化石燃料發(fā)電技術(shù)的理想選擇之一,既可用作中小容量的分布式電源(500kw一50MW),也可用作大容量的中心電站(l00MW)。尤其是加壓型SOFC與微型燃?xì)廨喗Y(jié)合組成聯(lián)合循環(huán)發(fā)電的示范,將使SOFC的優(yōu)越性進一步得到體現(xiàn)。 (5)PEFC:PEPC的運行溫度較低(約80),它的啟動時間很短,在幾分鐘內(nèi)可達到滿負(fù)荷。與PAFC相比,電流密度和比功率都較高,發(fā)電效率也較高(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論