




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、鼓風(fēng)式機(jī)械通風(fēng)冷卻塔空氣動力特性數(shù)值模擬研究趙順安、李紅莉、毋飛翔(中國水利水電科學(xué)研究院,北京100038)Numerical research on aerodynamic characteristics of the forced draft mechanical cooling towerZhaoShunan、LiHongli、WuFeixiang(China Institute of Water Resource and Hydropower Research, Beijing 100038 )摘要:鼓風(fēng)式機(jī)械通風(fēng)冷卻塔常用于核電廠的重要廠用水系統(tǒng),但相關(guān)設(shè)計(jì)規(guī)范并沒有給出冷卻塔的空
2、氣動力特性計(jì)算公式。本文采用Fluent軟件對鼓風(fēng)式機(jī)械通風(fēng)冷卻塔的空氣動力進(jìn)行了數(shù)值模擬計(jì)算,對冷卻塔的設(shè)計(jì)布置進(jìn)行了優(yōu)化,分析總結(jié)給出了冷卻塔阻力計(jì)算公式。結(jié)果表明,填料安裝位置對鼓風(fēng)式機(jī)械通風(fēng)冷卻塔整塔阻力影響不大,但會影響填料斷面風(fēng)速分布均勻性,填料安裝高度越低,風(fēng)速分布越均勻;出口收縮段的高度越高,整塔阻力越小,風(fēng)速分布越均勻;出口收縮段與水平的夾角越大,整塔阻力系數(shù)越小,但變化趨勢不明顯,收縮角基本不影響填料斷面風(fēng)速分布均勻性。關(guān)鍵詞:鼓風(fēng)式冷卻塔;塔型;阻力系數(shù);風(fēng)速均勻性Abstract:The forced draft mechanical cooling tower is
3、always used in a nuclear power plant, while the relevant design specificationshave notformula about the aerodynamic characteristics of cooling tower.This paper uses FLUENT software to simulate and study the aerodynamic characteristics of the forced draft mechanical cooling tower,and optimize the des
4、ign of the cooling tower,and analysis to summarize the cooling tower resistance calculative formula.The results show that the height of the fill has little effectsonthe whole tower resistance coefficient,but it influences the wind velocity distribution uniformity of the fill section, the lower the p
5、osition is, themore uniform the wind velocity distributionis; the convergent section height is higher, the whole tower resistance is smaller and the wind velocity distribution is more uniform.The angle between convergent section and horizon is bigger, the whole tower resistance is smaller,while
6、 this trend is not obvious,it does not affectthe wind velocity distribution uniformity on the fill section.Keywords:the forced draft mechanical cooling tower,tower shape, resistance coefficient, wind velocity distribution uniformity1研究背景內(nèi)陸核電廠的重要廠用水的水量不大,但卻影響核電廠的安全。鼓風(fēng)式機(jī)械通風(fēng)冷卻塔能較好地適應(yīng)核電對安全性和抗震性能的要求而常被內(nèi)陸
7、核電廠采用。鼓風(fēng)式機(jī)械通風(fēng)冷卻塔不僅在通風(fēng)方式上有別于常規(guī)的抽風(fēng)式機(jī)械通風(fēng)冷卻塔,在塔型結(jié)構(gòu)布置上也有明顯差異。我國的相關(guān)設(shè)計(jì)規(guī)范和資料對鼓風(fēng)式機(jī)械通風(fēng)冷卻塔沒有明確的設(shè)計(jì)計(jì)算方法15。為了解塔內(nèi)氣流特性并對塔型進(jìn)行優(yōu)化,需要通過相關(guān)的研究來確定其空氣動力特性。通過物理模型試驗(yàn)來研究冷卻塔空氣動力特性是一個十分有效的手段,但是由于鼓風(fēng)式機(jī)械通風(fēng)冷卻塔模型本身的復(fù)雜性及系統(tǒng)試驗(yàn)的塔型的變化,使模型試驗(yàn)研究工作量和投資都很大。本文利用Fluent軟件建立鼓風(fēng)式機(jī)械通風(fēng)冷卻塔空氣動力計(jì)算的數(shù)學(xué)模型,經(jīng)過與試驗(yàn)結(jié)果對比驗(yàn)證,確定模型參數(shù)和網(wǎng)格數(shù)量。研究了不同塔型條件下塔內(nèi)氣流分布及阻力特性,最終分析總
8、結(jié)出了鼓風(fēng)式機(jī)械通風(fēng)冷卻塔的阻力計(jì)算公式以及塔型與配風(fēng)均勻性的關(guān)系。阻力系數(shù)計(jì)算公式與試驗(yàn)結(jié)果相比偏差小于5%,可為設(shè)計(jì)提供參考。1research backgroundThe water quantity of important water systemof inland nuclear power plant is not big, but it affects the security of nuclear power plant.The forced draft mechanical cooling tower can satisfy the requirements of equi
9、pment security and earthquake resistance,so it will be used more and more in inland nuclear power plant.The forced draft mechanical cooling tower is not only different from the conventionalinduced draft mechanical cooling tower in ventilation way, but also has distinct difference in tower shape and
10、structure layout.China's relevant design specifications and information on the forced draft mechanical cooling towerhave no clear design method.For understanding the airflow characteristics of the tower and optimizingthe tower shape,it's necessary to do some relevant research to realizetheae
11、rodynamic characteristics.It's a very effective way to establish a physical model to study the aerodynamic characteristics of the cooling tower,however, due to the forced draft mechanical cooling tower model's complexity and variability, the workload ofexperiment and investment is very big.T
12、his paper uses FLUENT software to build a mathematical modelof the forced draft mechanical cooling tower to study the tower aerodynamic characteristics,andafter comparing with the experimental results to determine the model parameters and grid number. It studiesthe airflow distribution and resistanc
13、e characteristicsinthe conditions of different tower shapes, and analysis to summarize the cooling tower resistance calculative formula and the relationship between tower shape and airflow distribution uniformity.The difference ofcomputational resistance coefficientand the experimental results is le
14、ss than 5%,it can provide a reference for design.2數(shù)學(xué)模型及計(jì)算方法2.1空氣流場控制方程塔內(nèi)外流場為等溫、不可壓流動,其控制方程包括連續(xù)方程、動量方程,并選用雙方程湍流模式對方程進(jìn)行封閉,各方程可寫為統(tǒng)一形式:(1)式中:為空氣密度,kg/m3;為空氣流速,m/s。各控制方程的變量、擴(kuò)散系數(shù)項(xiàng)與源項(xiàng)如下表1。表1控制方程中各變量代表參數(shù)控制方程連續(xù)方程100動量方程(流速),湍能方程耗散方程其中生成項(xiàng);為空氣分子粘性系數(shù);為壓力;為紊流粘性系數(shù),由動能和紊動耗散率求出:,為經(jīng)驗(yàn)常數(shù);和分別為和的紊流普朗特?cái)?shù)。2 Mathematical mo
15、dels and calculative methods2.1Air flow governing equationsThe tower flow field is isothermal and incompressible.Itsgoverning equations include continuity equation, momentum equation,which can be closed withtwo-equation turbulence model,these equations can be written as a unified form: (1)Where:is a
16、ir density, kg/m3; is air velocity, m/s.Allgoverning equations' variable、diffusion coefficient term and source termare shown as Table 1 below.Table 1, andofevery governing equationGoverningequationsContinuityequation100Momentum equation(Velocity of flow),Turbulentenergyequation Dissipation equat
17、ion Generated item, is viscosity coefficient of the air molecules; is pressure, Pa; is the turbulent viscosity coefficient,which is can be calculated by the turbulent kinetic energy and dissipation rate:, is an empirical constant; and are turbulent Prandtlnumber of and .2.2 邊界條件底部為固壁無滑移邊界條件,四周及頂部采用壓
18、力出口邊界條件,塔殼采用固壁邊界條件。進(jìn)風(fēng)口及塔的出口都設(shè)置成內(nèi)部邊界;填料區(qū)域設(shè)置成多孔介質(zhì)邊界條件,并根據(jù)實(shí)測填料阻力系數(shù)設(shè)置各方向阻力系數(shù);風(fēng)機(jī)采用Fluent風(fēng)扇邊界條件,也可采用第一類邊界條件。2.2 Boundary conditionsThe bottom of the computational domain is solid wall boundary condition with no-slip,all around and top is pressure outlet boundary conditions,the tower shell is solid wall bo
19、undary condition.The boundaries of the air inlet and outlet are defined as interior; the porous model is used to simulate the fill and according to the measured resistance coefficient to set thefillresistance coefficient in each direction; the FLUENT fan model is used to simulate the fan of the towe
20、r,first boundary condition can also be used.2.3冷卻塔阻力系數(shù)及風(fēng)速分布均勻性計(jì)算鼓風(fēng)式機(jī)械通風(fēng)冷卻塔,氣流經(jīng)由風(fēng)機(jī)鼓入塔內(nèi),依次經(jīng)過塔進(jìn)風(fēng)口,雨區(qū)、填料等,并經(jīng)由出口排入到大氣中,氣流經(jīng)過各部分的阻力為該區(qū)域前后斷面的全壓差,一般表示為阻力系數(shù)與填料斷面平均氣流速度頭之積: (2)式中為氣流經(jīng)過某區(qū)域前后斷面的全壓差(Pa);為空氣密度(kg/m3);為填料斷面平均風(fēng)速(m/s)。填料斷面處風(fēng)速分布狀況影響冷卻塔的熱力特性,一般將填料斷面風(fēng)速分布均勻性作為一個設(shè)計(jì)指標(biāo),用風(fēng)速分布均布系數(shù)表示:(3)式中為填料斷面風(fēng)速分布均布系數(shù);為填料斷面各點(diǎn)風(fēng)
21、速(m/s);n為風(fēng)速統(tǒng)計(jì)點(diǎn)的個數(shù)。2.3 Computational methods ofthe cooling tower resistance coefficient and wind velocity uniformityFor the forced draft mechanical cooling tower,airflow is blowninto thetower by the fan,sequentially through the tower inlet, rain zone, fill etc,and is dischargedinto the atmosphere thr
22、ough theoutlet finally. The resistanceof each part is the pressurelossof the region,which is generally expressed as the resistance coefficient multiply the average flow velocity head: (2)Where is the pressureloss of the region(Pa); is air density(kg/m3); is the average wind velocity of the fill sect
23、ion(m/s).Distribution of wind velocity at the fill section affects the thermodynamic characteristics of the cooling tower,generally put the wind velocity distributionuniformity of the fill section as a design index,it can be expressedwith a velocity distribution uniformity coefficient:(3)Where is th
24、e velocity distribution uniformity coefficient;is the velocity at the measure point in the fill section(m/s);n is the velocity statistical pointsnumber.2.4 模型的驗(yàn)證對已具有試驗(yàn)結(jié)果的某抽風(fēng)式機(jī)械通風(fēng)冷卻塔的空氣動力特性模型試驗(yàn)6作對比驗(yàn)證計(jì)算,冷卻塔如圖1示,首先對冷卻塔進(jìn)行網(wǎng)格的敏感性分析,然后再將計(jì)算結(jié)果進(jìn)行對比分析。圖1 抽風(fēng)式機(jī)械通風(fēng)冷卻塔模型試驗(yàn)布置示意圖不同填料阻力條件下模型試驗(yàn)實(shí)測與計(jì)算結(jié)果對比如圖2所示,圖中橫坐標(biāo)L0/L
25、為距其中一側(cè)塔壁的相對距離,V/為相對風(fēng)速,V為測點(diǎn)風(fēng)速,為測點(diǎn)風(fēng)速的平均值。進(jìn)風(fēng)口氣流流態(tài)作對比如圖3所示,從圖中可以看出,試驗(yàn)結(jié)果與數(shù)值計(jì)算結(jié)果規(guī)律較為一致,吻合良好。圖2 試驗(yàn)與計(jì)算填料斷面風(fēng)速分布對比(a)模型試驗(yàn)結(jié)果 (b)數(shù)值計(jì)算結(jié)果圖3 試驗(yàn)與計(jì)算進(jìn)風(fēng)口上沿氣流流態(tài)分布對比進(jìn)風(fēng)口區(qū)域冷卻塔阻力系數(shù)試驗(yàn)與計(jì)算結(jié)果對比見表2,二者相差不大于5%,吻合較好。表2 模型試驗(yàn)與數(shù)值計(jì)算進(jìn)風(fēng)口區(qū)域阻力系數(shù)對比結(jié)果填料阻力系數(shù)進(jìn)風(fēng)口區(qū)域阻力系數(shù)相差(%)試驗(yàn)結(jié)果計(jì)算結(jié)果1016.116.1-0.002026.127.34.323036.138.04.922.4 Model validation
26、To do validationwiththe experimental results of aerodynamiccharacteristics of an induced draft mechanical cooling tower model,the layout drawing ofthe cooling tower is shown as Figure 1, Firstly, analysis the grid sensitivity,then compare and analyzethe results.Fig. 1Layout drawing of the induced dr
27、aft mechanical cooling tower model In the conditions of different fill resistance coefficients,the results of the comparisonbetween experimental and computational are shown in Figure 2, Abscissa L0 / L isthe relative distance from one side to the wall, V/is relative wind velocity, V is the velocity
28、at the measure point,is the average measure points wind velocity.The results of the comparisonbetween experimental and numericalinlet air flow state are shown in figure 3,as can be seen from Fig.3,experimental results is consistent with the results of numerical calculation.Fig. 2Comparison between e
29、xperimental and computational fill section wind velocity distribution(a)Experimental results(b)Numerical resultsFig.3Comparison between experimental and Numericalinlet air flow distributionComparison betweenexperimental and Numerical cooling tower air inlet area resistance coefficient are shown in t
30、able 2,the difference is not greater than5%,the resultstallywell.Table 2Comparison betweenexperimental and computational cooling tower air inlet area resistance coefficientFill resistance coefficientInlet resistance coefficientDifference (%)ExperimentalresultsNumerical results1016.116.1-0.002026.127
31、.34.323036.138.04.923計(jì)算結(jié)果及分析鼓風(fēng)式機(jī)械通風(fēng)冷卻塔不同的塔型尺寸,如填料的安裝高度、塔出口收縮段的高度、角度等,都會影響塔內(nèi)氣流阻力特性及風(fēng)速分布,本文分別研究了不同塔型對冷卻塔氣流特性的影響。鼓風(fēng)式機(jī)械通風(fēng)冷卻塔立面布置如圖4所示,塔的平面尺寸為9.0m×9.0m,風(fēng)機(jī)直徑為6.0m。HCHF圖4 鼓風(fēng)式機(jī)械通風(fēng)冷卻塔立面布置圖3 Results and analysisDifferent tower shapes for the forced draft mechanical cooling tower,such as installation heig
32、ht of the fill、the convergent section height and angle,will affect the tower airflow resistance characteristics and wind velocity distribution.This paper studies the influence of different tower shapes on the air flow characteristics. The forced draft mechanical cooling tower elevation is shown as F
33、ig.4,tower plane size is 9.0m×9.0m,fan diameter is 6.0m.Fig.4The forced draft mechanical cooling tower elevation3.1計(jì)算模型的建立及網(wǎng)格劃分流體仿真計(jì)算域范圍的選取影響計(jì)算的速度和精度,根據(jù)經(jīng)驗(yàn),當(dāng)計(jì)算域到達(dá)一定的大小時,塔內(nèi)的流場就不再受計(jì)算域大小的限制。假定塔高為H,寬為W,進(jìn)風(fēng)口高為H1,經(jīng)過試算分析,計(jì)算域進(jìn)風(fēng)口上下游寬度取為3H1、寬度取為4W、高度取為2H時再增大計(jì)算域范圍對計(jì)算影響不大。數(shù)值模擬計(jì)算與計(jì)算網(wǎng)格的劃分密切相關(guān),本文進(jìn)行了網(wǎng)格相關(guān)性分析計(jì)算,結(jié)果
34、如圖56所示。當(dāng)網(wǎng)格數(shù)量達(dá)到50萬時,塔內(nèi)氣流特性受網(wǎng)格數(shù)量的影響已經(jīng)很小,計(jì)算區(qū)域網(wǎng)格圖如圖7所示。圖5 網(wǎng)格數(shù)量對冷卻塔阻力系數(shù)影響圖6網(wǎng)格數(shù)量對填料斷面風(fēng)速分布影響圖7 塔內(nèi)及計(jì)算域網(wǎng)格示意圖3.1Establishmentof calculative modeland meshgenerationThe scale of fluidcomputational domain affects the calculativevelocity and accuracy,based on experience,when computational domain reaches to a cert
35、ain scale, flow field in the tower is no longer limited by computational domain scale.Assumethat the tower height is H, width is W, air inlet height is H1,according to the results of the trial computation,it makes little difference to increase the computational domain when the length of upstream and
36、downstream of air inlet is 3H1, the width of the whole computational domain is 4W and the height is 2H.Numerical simulation is closely related togrid partition,this paper analysis grid correlation,the results are shown in Figure 5 and 6.It is known according to the two figures that thegrid number ha
37、s little effect on air flow characteristics in the towerwhen the grid number reaching 500000,computational domain grid is shown as Fig.7.Fig 5The influence of grid numberon the cooling tower resistance coefficientFig 6The influence of grid numberon thefill section velocity distributionFig 7The tower
38、 and computational domain grid schematic diagram3.2填料安裝高度對冷卻塔氣流特性影響不同的淋水填料安裝高度時,冷卻塔的阻力系數(shù)與填料斷面風(fēng)速分布計(jì)算結(jié)果如圖8和圖9所示,圖中橫坐標(biāo)HF/L為填料底至進(jìn)風(fēng)口上沿距離與塔寬之比,結(jié)果表明,填料安裝高度對整塔阻力系數(shù)影響不大,但填料安裝高度離塔進(jìn)風(fēng)口遠(yuǎn)時,填料阻力較小者風(fēng)速分布均勻性變差。圖8填料安裝高度對整塔阻力系數(shù)的影響圖9填料安裝高度對填料斷面風(fēng)速分布均勻性的影響3.2 The influence of the fill installation height on the cooling to
39、wer aerodynamic characteristicsIn the conditions of different fill installation height, the computational results of cooling tower resistance coefficient and fill section wind velocity distribution are shown in figure 8 and figure 9,abscissaHF/L is the distance fromfill bottom totop of the air inlet
40、divides tower width,it turns out that the bottom height of the fillhas little effect on the whole tower resistance coefficient,but when fill installation height is higher,the smallerthefill resistance coefficientis ,the worse the wind velocitydistribution uniformity is.Fig.8Theinfluen
41、ce of fill installation heighton the cooling tower resistance coefficientFig.9Theinfluence of fill installation heighton the fill section velocity distribution3.3冷卻塔出口收縮高度對冷卻塔氣流特性的影響調(diào)整冷卻塔出口收縮高度,冷卻塔的阻力系數(shù)與填料斷面風(fēng)速分布計(jì)算結(jié)果如圖10和11所示,圖中橫坐標(biāo)HC/L為收縮段至進(jìn)風(fēng)口上沿距離與塔寬之比。由圖可以看出,隨著塔出口收縮高度的增加,冷卻塔阻力系數(shù)降低,當(dāng)HC/L達(dá)到0.75后,阻力系數(shù)變
42、化減小,大于0.90后基本不再變化,填料斷面風(fēng)速分布均布系數(shù)亦有相似的規(guī)律。圖10 收縮高度對整塔阻力系數(shù)的影響圖11 收縮高度對填料斷面風(fēng)速分布均勻性的影響3.3The influence of the outlet convergentsection height on the cooling tower aerodynamic characteristicsAdjusting the cooling tower outlet convergent height,the computational results of cooling tower resistance coefficien
43、t and fill section wind velocity distribution are shown in figure 10 and figure 11, Abscissa HC/L is the distance fromthe convergent section tothe top of the air inlet divides tower width. As can be seen from the two figures,with the increase of the tower outletconvergent height, the whole cooling t
44、ower resistance coefficient decrease,when HC/L reaches 0.75,the resistance coefficient change becomes slowly,when HC/L is greater than 0.90,it's no change,fill section windvelocity distribution uniformity coefficient also has the similar laws.Fig.10Theinfluence of convergent heighton the cooling
45、 tower resistance coefficientFig.11Theinfluence of convergent heighton the fill section wind velocity distribution3.4冷卻塔出口收縮角度對冷卻塔氣流特性的影響調(diào)整冷卻塔出口收縮角度,冷卻塔的阻力系數(shù)與填料斷面風(fēng)速分布計(jì)算結(jié)果如圖12和13所示,圖中橫坐標(biāo)為收縮段與水平的夾角。隨著塔出口收縮角度的增加,冷卻塔阻力系數(shù)降低,但趨勢不明顯。填料斷面風(fēng)速分布均布系數(shù)基本不受塔出口收縮角度的影響。圖12 收縮角度對整塔阻力系數(shù)的影響圖13 收縮角度對填料斷面風(fēng)速分布均勻性的影響3.4The
46、influence of convergentangle on the cooling tower airflow characteristicsAdjusting the cooling tower outlet convergentangle,the computational results of cooling tower resistance coefficient and fill section wind velocity distribution are shown in figure 12 and figure 13,Abscissa is the angle between
47、 convergent sectionand horizon.With the increase of tower outletconvergentangle, the cooling tower resistance coefficient decrease,but this trend is not obvious.Fill section wind velocity distribution uniformity coefficient is not affected by tower outlet convergentangle.Fig.12Theinfluence of conver
48、gentangleon the cooling tower resistance coefficientFig.13Theinfluence of convergentangleon the fill section wind velocity distribution3.5 冷卻塔阻力系數(shù)計(jì)算公式按式(2)對不同塔型尺寸的計(jì)算結(jié)果進(jìn)行分析總結(jié),可獲得以下冷卻塔自風(fēng)機(jī)進(jìn)口到塔出口相對于填料斷面速度頭的阻力系數(shù)計(jì)算公式。公式整理時塔的出口段收縮角為27º,收縮段相對高度為0.50.92。(4)式中為填料阻力系數(shù);為冷卻塔淋水面積();為冷卻塔出口面積()。3.5 Calculative
49、 formula of cooling tower resistance coefficient In the condition of summarizing the results of different tower shapesaccording to equation (2),itcan obtain the cooling tower resistance coefficient calculative formula which is from tower inlet to outlet relative to the fill section wind velocity.The
50、 convergent angle is 27º,the convergent section relative height HC/L is 0.50.92 when finishing the formula. (4)Where isthefillresistance coefficient; is tower's rain area (m2); is outlet area (m2)。4 結(jié)論本文對鼓風(fēng)式機(jī)械冷卻塔在不同填料安裝高度、不同收縮高度與角度等條件下的塔的空氣動力特性進(jìn)行了數(shù)值模擬,結(jié)果表明,填料安裝高度對冷卻塔整塔阻力系數(shù)影響不大,在填料阻力小時,安裝高度高
51、時均勻性變差;出口收縮段相對高度越大,阻力越低,填料斷面風(fēng)速分布也越均勻,當(dāng)其大于0.90時所獲的收益已經(jīng)很?。怀隹谑湛s段與水平夾角增大時,冷卻塔阻力系數(shù)降低,但趨勢不明顯,填料斷面風(fēng)速分布均布系數(shù)基本不受塔出口收縮角度的影響。本文還分析總結(jié)了鼓風(fēng)式冷卻塔的阻力系數(shù)計(jì)算公式,計(jì)算方法經(jīng)過類似模型試驗(yàn)對比,與試驗(yàn)結(jié)果偏差在5%之內(nèi),可供冷卻塔設(shè)計(jì)計(jì)算參考。4 Conclusions This paper establishes a numerical model to study the aerodynamic characteristics of the forced draft mechan
52、icalcooling tower in the conditions of differentfill installation heights、differentconvergent heights and angles, it turns out that the bottom height of the fillhas little effects on the whole tower resistance coefficient,but when fill installation height is higher,the smallerthefill resistance coefficientis ,the worse the distribution uniformity is;with the increase of the tower outletconvergent height, cooling tower resistance coefficient decrease,the fill section velocitydistrib
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年元宇宙社交平臺用戶需求預(yù)測與發(fā)展瓶頸分析報(bào)告
- 2025年醫(yī)院信息化建設(shè)電子病歷系統(tǒng)優(yōu)化與醫(yī)療信息化應(yīng)用場景研究報(bào)告
- 藝術(shù)品數(shù)字化交易平臺投資價(jià)值與風(fēng)險(xiǎn)評估報(bào)告
- 2025年醫(yī)院信息化建設(shè)電子病歷系統(tǒng)功能優(yōu)化深度分析報(bào)告
- 2025年醫(yī)院電子病歷系統(tǒng)在醫(yī)院信息化建設(shè)中的數(shù)據(jù)挖掘技術(shù)應(yīng)用報(bào)告
- 2025年汽車輕量化材料在汽車輕量化車身制造工藝中的應(yīng)用趨勢報(bào)告
- 2025年Z世代消費(fèi)行為分析:新消費(fèi)品牌產(chǎn)品創(chuàng)新與品牌定位報(bào)告
- 農(nóng)村金融服務(wù)創(chuàng)新與綠色金融:2025年可持續(xù)發(fā)展報(bào)告
- 文化與科技融合在數(shù)字藝術(shù)展覽中的創(chuàng)新應(yīng)用與發(fā)展趨勢報(bào)告
- 爆破員考試題及答案
- 2024-2025學(xué)年廣東省新部編版七年級歷史第二學(xué)期期末模擬卷(含答案)
- 2025年新疆維吾爾自治區(qū)公務(wù)員錄用考試面試真題試卷:無領(lǐng)導(dǎo)小組討論邊疆穩(wěn)定與發(fā)展試題
- 2025年高考湖南卷物理真題(解析版)
- 七年級下冊地理知識點(diǎn)總結(jié)(考點(diǎn)清單)(背記版)七年級地理下學(xué)期期末復(fù)習(xí)(人教2024版)
- 2025至2030中國汽車物流行業(yè)深度發(fā)展研究與企業(yè)投資戰(zhàn)略規(guī)劃報(bào)告
- 2025年四川富潤招聘筆試沖刺題(帶答案解析)
- 公司物流內(nèi)部管理制度
- 公司資料部門管理制度
- 2025年數(shù)學(xué)中考專題復(fù)習(xí)課件:7.30 尺規(guī)作圖
- 人教部編版五年級下冊語文期末復(fù)習(xí)現(xiàn)代文閱讀(含課內(nèi)、課外)專項(xiàng)訓(xùn)練(三)(含答案)
- 育苗基地可行性研究報(bào)告
評論
0/150
提交評論