數(shù)學(xué)選修22知識(shí)點(diǎn)總結(jié)_第1頁(yè)
數(shù)學(xué)選修22知識(shí)點(diǎn)總結(jié)_第2頁(yè)
數(shù)學(xué)選修22知識(shí)點(diǎn)總結(jié)_第3頁(yè)
數(shù)學(xué)選修22知識(shí)點(diǎn)總結(jié)_第4頁(yè)
數(shù)學(xué)選修22知識(shí)點(diǎn)總結(jié)_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、數(shù)學(xué)選修2-2知識(shí)點(diǎn)總結(jié)導(dǎo)數(shù)及其應(yīng)用一.導(dǎo)數(shù)概念的引入1. 導(dǎo)數(shù)的物理意義:瞬時(shí)速率。一般的,函數(shù)在處的瞬時(shí)變化率是,我們稱它為函數(shù)在處的導(dǎo)數(shù),記作或,即=2. 導(dǎo)數(shù)的幾何意義:曲線的切線.通過圖像,我們可以看出當(dāng)點(diǎn)趨近于時(shí),直線與曲線相切。容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時(shí),函數(shù)在處的導(dǎo)數(shù)就是切線PT的斜率k,即3. 導(dǎo)函數(shù):當(dāng)x變化時(shí),便是x的一個(gè)函數(shù),我們稱它為的導(dǎo)函數(shù). 的導(dǎo)函數(shù)有時(shí)也記作,即二.導(dǎo)數(shù)的計(jì)算基本初等函數(shù)的導(dǎo)數(shù)公式:1若(c為常數(shù)),則; 2 若,則;3 若,則 4 若,則;5 若,則 6 若,則7 若,則 8 若,則導(dǎo)數(shù)的運(yùn)算法則1. 2. 3. 復(fù)合函數(shù)求導(dǎo) 和,稱

2、則可以表示成為的函數(shù),即為一個(gè)復(fù)合函數(shù)三.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.函數(shù)的單調(diào)性與導(dǎo)數(shù): 一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi)(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.2.函數(shù)的極值與導(dǎo)數(shù)極值反映的是函數(shù)在某一點(diǎn)附近的大小情況. 求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值;4.函數(shù)的最大(小)值與導(dǎo)數(shù) 求函數(shù)在上的最大值與最小值的步驟: (1)求函數(shù)在內(nèi)的極值;(2) 將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.推理與證明考點(diǎn)一 合情推

3、理與類比推理根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理,歸納是從特殊到一般的過程,它屬于合情推理根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測(cè)其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理.類比推理的一般步驟:(1) 找出兩類事物的相似性或一致性;(2) 用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想);(3) 一般的,事物之間的各個(gè)性質(zhì)并不是孤立存在的,而是相互制約的.如果兩個(gè)事物在某些性質(zhì)上相同或相似,那么他們?cè)诹硪粚懶再|(zhì)上也可能相同或類似,類比的結(jié)論可能是真的.(4) 一般情況下,如果類比的相似性越多,

4、相似的性質(zhì)與推測(cè)的性質(zhì)之間越相關(guān),那么類比得出的命題越可靠.考點(diǎn)二 演繹推理(俗稱三段論)由一般性的命題推出特殊命題的過程,這種推理稱為演繹推理.考點(diǎn)三 數(shù)學(xué)歸納法1. 它是一個(gè)遞推的數(shù)學(xué)論證方法.2. 步驟:A.命題在n=1(或)時(shí)成立,這是遞推的基礎(chǔ);B.假設(shè)在n=k時(shí)命題成立; C.證明n=k+1時(shí)命題也成立,完成這兩步,就可以斷定對(duì)任何自然數(shù)(或n>=,且)結(jié)論都成立??键c(diǎn)三 證明1. 反證法: 2、分析法: 3、綜合法:數(shù)系的擴(kuò)充和復(fù)數(shù)的概念復(fù)數(shù)的概念(1) 復(fù)數(shù):形如的數(shù)叫做復(fù)數(shù),和分別叫它的實(shí)部和虛部.(2) 分類:復(fù)數(shù)中,當(dāng),就是實(shí)數(shù); ,叫做虛數(shù);當(dāng)時(shí),叫做純虛數(shù).(3

5、) 復(fù)數(shù)相等:如果兩個(gè)復(fù)數(shù)實(shí)部相等且虛部相等就說這兩個(gè)復(fù)數(shù)相等.(4) 共軛復(fù)數(shù):當(dāng)兩個(gè)復(fù)數(shù)實(shí)部相等,虛部互為相反數(shù)時(shí),這兩個(gè)復(fù)數(shù)互為共軛復(fù)數(shù).(5) 復(fù)平面:建立直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸除去原點(diǎn)的部分叫做虛軸。(6) 兩個(gè)實(shí)數(shù)可以比較大小,但兩個(gè)復(fù)數(shù)如果不全是實(shí)數(shù)就不能比較大小。復(fù)數(shù)的運(yùn)算1.復(fù)數(shù)的加,減,乘,除按以下法則進(jìn)行設(shè)則(1) (2) (3) 2,幾個(gè)重要的結(jié)論(1) (2) (3)若為虛數(shù),則3.運(yùn)算律(1) ;(2) ;(3)4.關(guān)于虛數(shù)單位i的一些固定結(jié)論:(1) (2) (3) (2)數(shù)學(xué)選修23第一章 計(jì)數(shù)原理知識(shí)點(diǎn):1、分類加法計(jì)數(shù)原理:

6、做一件事情,完成它有N類辦法,在第一類辦法中有M1種不同的方法,在第二類辦法中有M2種不同的方法,在第N類辦法中有MN種不同的方法,那么完成這件事情共有M1+M2+MN種不同的方法。 2、分步乘法計(jì)數(shù)原理:做一件事,完成它需要分成N個(gè)步驟,做第一 步有m1種不同的方法,做第二步有M2不同的方法,做第N步有MN不同的方法.那么完成這件事共有 N=M1M2.MN 種不同的方法。3、排列:從n個(gè)不同的元素中任取m(mn)個(gè)元素,按照一定順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列4、排列數(shù): 5、組合:從n個(gè)不同的元素中任取m(mn)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)

7、組合。6、組合數(shù): 7、二項(xiàng)式定理:8、二項(xiàng)式通項(xiàng)公式第二章 隨機(jī)變量及其分布1、 隨機(jī)變量:如果隨機(jī)試驗(yàn)可能出現(xiàn)的結(jié)果可以用一個(gè)變量X來表示,并且X是隨著試驗(yàn)的結(jié)果的不同而變化,那么這樣的變量叫做隨機(jī)變量 隨機(jī)變量常用大寫字母X、Y等或希臘字母 、等表示。2、 離散型隨機(jī)變量:在上面的射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量3、離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,. ,xi ,.,xn X取每一個(gè)值 xi(i=1,2,.)的概率P(=xi)Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)

8、稱分布列4、分布列性質(zhì) pi0, i =1,2, ; p1 + p2 +pn= 15、二點(diǎn)分布:如果隨機(jī)變量X的分布列為:其中0<p<1,q=1-p,則稱離散型隨機(jī)變量X服從參數(shù)p的二點(diǎn)分布6、超幾何分布:一般地, 設(shè)總數(shù)為N件的兩類物品,其中一類有M件,從所有物品中任取n(nN)件,這n件中所含這類物品件數(shù)X是一個(gè)離散型隨機(jī)變量,則它取值為k時(shí)的概率為,其中,且7、 條件概率:對(duì)任意事件A和事件B,在已知事件A發(fā)生的條件下事件B發(fā)生的概率,叫做條件概率.記作P(B|A),讀作A發(fā)生的條件下B的概率8、 公式: 9、 相互獨(dú)立事件:事件A(或B)是否發(fā)生對(duì)事件B(或A)發(fā)生的概率沒

9、有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件。10、 n次獨(dú)立重復(fù)事件:在同等條件下進(jìn)行的,各次之間相互獨(dú)立的一種試驗(yàn)11、二項(xiàng)分布: 設(shè)在n次獨(dú)立重復(fù)試驗(yàn)中某個(gè)事件A發(fā)生的次數(shù),A發(fā)生次數(shù)是一個(gè)隨機(jī)變量如果在一次試驗(yàn)中某事件發(fā)生的概率是p,事件A不發(fā)生的概率為q=1-p,那么在n次獨(dú)立重復(fù)試驗(yàn)中 (其中 k=0,1, ,n,q=1-p )于是可得隨機(jī)變量的概率分布如下:這樣的隨機(jī)變量服從二項(xiàng)分布,記作B(n,p) ,其中n,p為參數(shù)12、數(shù)學(xué)期望:一般地,若離散型隨機(jī)變量的概率分布為則稱 Ex1p1x2p2xnpn 為的數(shù)學(xué)期望或平均數(shù)、均值,數(shù)學(xué)期望又簡(jiǎn)稱為期望是離散型隨機(jī)變量。13、方差:D(

10、)=(x1-E)2·P1+(x2-E)2·P2 +.+(xn-E)2·Pn 叫隨機(jī)變量的均方差,簡(jiǎn)稱方差。14、集中分布的期望與方差一覽:期望方差兩點(diǎn)分布E=pD=pq,q=1-p二項(xiàng)分布, B(n,p)E=npD=qE=npq,(q=1-p)15、正態(tài)分布:若概率密度曲線就是或近似地是函數(shù) 的圖像,其中解析式中的實(shí)數(shù)是參數(shù),分別表示總體的平均數(shù)與標(biāo)準(zhǔn)差則其分布叫正態(tài)分布,f( x )的圖象稱為正態(tài)曲線。 16、基本性質(zhì):曲線在x軸的上方,與x軸不相交曲線關(guān)于直線x=對(duì)稱,且在x=時(shí)位于最高點(diǎn). 當(dāng)時(shí),曲線上升;當(dāng)時(shí),曲線下降并且當(dāng)曲線向左、右兩邊無限延伸時(shí),以x

11、軸為漸近線,向它無限靠近 當(dāng)一定時(shí),曲線的形狀由確定越大,曲線越“矮胖”,表示總體的分布越分散;越小,曲線越“瘦高”,表示總體的分布越集中當(dāng)相同時(shí),正態(tài)分布曲線的位置由期望值來決定.正態(tài)曲線下的總面積等于1.17、 3原則:從上表看到,正態(tài)總體在 以外取值的概率 只有4.6%,在 以外取值的概率只有0.3% 由于這些概率很小,通常稱這些情況發(fā)生為小概率事件.也就是說,通常認(rèn)為這些情況在一次試驗(yàn)中幾乎是不可能發(fā)生的.第三章 統(tǒng)計(jì)案例獨(dú)立性檢驗(yàn)假設(shè)有兩個(gè)分類變量X和Y,它們的值域分另為x1, x2和y1, y2,其樣本頻數(shù)列聯(lián)表為: y1y2總計(jì)x1aba+bx2cdc+d總計(jì)a+cb+da+b+

12、c+d若要推斷的論述為H1:“X與Y有關(guān)系”,可以利用獨(dú)立性檢驗(yàn)來考察兩個(gè)變量是否有關(guān)系,并且能較精確地給出這種判斷的可靠程度。具體的做法是,由表中的數(shù)據(jù)算出隨機(jī)變量K2的值(即K的平方) K2 = n (ad - bc) 2 / (a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d為樣本容量,K2的值越大,說明“X與Y有關(guān)系”成立的可能性越大。 K23.841時(shí),X與Y無關(guān); K2>3.841時(shí),X與Y有95%可能性有關(guān);K2>6.635時(shí)X與Y有99%可能性有關(guān)回歸分析 回歸直線方程   其中, 高中數(shù)學(xué)選修4-1知識(shí)點(diǎn)總結(jié)平行線等分線段定理平行

13、線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。推理1:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。推理2:經(jīng)過梯形一腰的中點(diǎn),且與底邊平行的直線平分另一腰。平分線分線段成比例定理平分線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例。相似三角形的判定及性質(zhì)相似三角形的判定:定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。相似三角形對(duì)應(yīng)邊的比值叫做相似比(或相似系數(shù))。由于從定義出發(fā)判斷兩個(gè)三角形是否相似,需考慮6個(gè)元素,即三組對(duì)應(yīng)角是否分別相

14、等,三組對(duì)應(yīng)邊是否分別成比例,顯然比較麻煩。所以我們?cè)?jīng)給出過如下幾個(gè)判定兩個(gè)三角形相似的簡(jiǎn)單方法:(1)兩角對(duì)應(yīng)相等,兩三角形相似;(2)兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似;(3)三邊對(duì)應(yīng)成比例,兩三角形相似。預(yù)備定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與三角形相似。判定定理1:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩角對(duì)應(yīng)相等,兩三角形相似。判定定理2:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩邊和另一個(gè)三角形的兩邊對(duì)應(yīng)成比例,并且夾角相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩邊對(duì)應(yīng)成比例且夾

15、角相等,兩三角形相似。判定定理3:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的三條邊和另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似。簡(jiǎn)述為:三邊對(duì)應(yīng)成比例,兩三角形相似。引理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。定理:(1)如果兩個(gè)直角三角形有一個(gè)銳角對(duì)應(yīng)相等,那么它們相似;(2)如果兩個(gè)直角三角形的兩條直角邊對(duì)應(yīng)成比例,那么它們相似。定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)三角形的斜邊和直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。相似三角形的性質(zhì):(1)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比和對(duì)應(yīng)平分線的比都等于相似比;(

16、2)相似三角形周長(zhǎng)的比等于相似比;(3)相似三角形面積的比等于相似比的平方。相似三角形外接圓的直徑比、周長(zhǎng)比等于相似比,外接圓的面積比等于相似比的平方。直角三角形的射影定理射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng);兩直角邊分別是它們?cè)谛边吷仙溆芭c斜邊的比例中項(xiàng)。圓周定理圓周角定理:圓上一條弧所對(duì)的圓周角等于它所對(duì)的圓周角的一半。圓心角定理:圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧相等。推論2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。圓內(nèi)接四邊形的性質(zhì)與判定定理定理1:圓的內(nèi)接四

17、邊形的對(duì)角互補(bǔ)。定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的對(duì)角。圓內(nèi)接四邊形判定定理:如果一個(gè)四邊形的對(duì)角互補(bǔ),那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。推論:如果四邊形的一個(gè)外角等于它的內(nèi)角的對(duì)角,那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。圓的切線的性質(zhì)及判定定理切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑。推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。推論2:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。弦切角的性質(zhì)弦切角定理:弦切角等于它所夾的弧所對(duì)的圓周角。與圓有關(guān)的比例線段相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。割線定理:從園外一

18、點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等。切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。選修4-4數(shù)學(xué)知識(shí)點(diǎn)一、選考內(nèi)容坐標(biāo)系與參數(shù)方程高考考試大綱要求:1坐標(biāo)系: 理解坐標(biāo)系的作用. 了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況. 能在極坐標(biāo)系中用極坐標(biāo)表示點(diǎn)的位置,理解在極坐標(biāo)系和平面直角坐標(biāo)系中表示點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化. 能在極坐標(biāo)系中給出簡(jiǎn)單圖形(如過極點(diǎn)的直線、過極點(diǎn)或圓心在極點(diǎn)的圓)的方程.通過比較這些圖形在極坐標(biāo)系和平面直角坐標(biāo)系中的方程,理解用方程表示平面圖形時(shí)選擇適當(dāng)坐標(biāo)系的意義.2參數(shù)方程: 了解參數(shù)方程,了解參數(shù)的意義. 能選擇適當(dāng)?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程.二、知識(shí)歸納總結(jié):1伸縮變換:設(shè)點(diǎn)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換的作用下,點(diǎn)對(duì)應(yīng)到點(diǎn),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡(jiǎn)稱伸縮變換。2.極坐標(biāo)系的概念:在平面內(nèi)取一個(gè)定點(diǎn),叫做極點(diǎn);自極點(diǎn)引一條射線叫做極軸;再選定一個(gè)長(zhǎng)度單位、一個(gè)角度單位(通常

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論