




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第 25 講 平面向量的數(shù)量積 (1課時)神經(jīng)網(wǎng)絡(luò)準確記憶!平面向量數(shù)量積和運算重點難點好好把握!重點:1數(shù)量積的概念的幾何意義。2數(shù)量積的坐標運算及運算律。難點:1數(shù)量積運算的應(yīng)用。2數(shù)量積的性質(zhì)。考綱要求注意緊扣!1掌握平面向量的數(shù)量積及其幾何意義。2了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題,掌握向量垂直的條件。3. 掌握平面兩點間的距離公式以及線段的定比分點和中點坐標公式,并且能熟練運用。4. 掌握平移公式。命題預(yù)測僅供參考!1數(shù)量積在高考中占有重要地位,涉及的題型有選擇題、填空題、解答題。2數(shù)量積在數(shù)學(xué)和其他學(xué)科中的應(yīng)用??键c熱點一定掌握!1平面向量的數(shù)量積 定義:a、
2、b的數(shù)量積a·b = |a|·|b|· 。其中a、b不等于零,是a、b的夾角,數(shù)量積也稱為內(nèi)積。規(guī)定:0向量與任一向量的數(shù)量積為0。特別地,當a與b同向時,ab = |a|b|(這也是的另一形式的充要條件);當a與b反向時,a×b = -|a|b|。 a·b的幾何意義:數(shù)量積a·b等于a的長度與b在a方向上的投影|b|cosq的乘積。例已知 ,與的夾角是120º,計算: ; 。解: 點評:求向量的模時,注意利用公式 , 。2平面向量數(shù)量積的運算數(shù)量積的運算律:;。數(shù)量積的坐標運算:設(shè)a = (x1, y1),b = (x2,
3、 y2),則:ab = x1x2 + y1y2 。注意事項:若 或 ,則,反之則不然。因為當時,也有。若 ,則 ,反之則不然,即向量等式不能兩邊同時除以一個向量。因為是一個數(shù),那么與平行,同理與平行,而一般、并不平行。即向量數(shù)量積的結(jié)合律不成立。例設(shè)、是任意的非零向量,且相互不共線,則下列四個命題中是真命題的有(): ; ; 不與垂直; 。. . . . 解:因為與平行,與平行,所以和不一定相等,命題不正確。因為、是任意的非零向量,且相互不共線,則根據(jù)三角形兩邊之差小于第三邊,可知命題正確。因為 =,所以與垂直,命題不正確。,命題正確。綜上所述,應(yīng)選。3數(shù)量積的性質(zhì)設(shè)a、b為兩個非零向量,e是
4、與b同向的單位向量,是a與b的夾角,則 ea = ae =|a|cosq 。 ab Û ab = 0 。設(shè) a = (x, y) ,則特別的aa = |a|2或。設(shè) a 的起點和終點坐標分別為、,則 (兩點距離公式)。 cosq =,其中a =、b = (夾角公式)。 |ab| |a|b| 。 幾個推論在數(shù)量積運算律中,有三個形似實數(shù)的公式在解題中可以直接應(yīng)用:(a±b)a±a·bb, (ab)(ab)ab 。例已知兩單位向量a與b的夾角為120º,若 c=2a-b,d=3b-a,試求c與d的夾角。解: a、b為兩單位向量, |a|=|b|=1
5、,又 a與b的夾角為120º, ab=|a|b|cos120º, |c|=cc=(2a-b) (2a-b)=4aa-4ab+bb=4|a|-4ab+|b|=7, |c|=。 , 。 , (其中為的夾角)。 。4兩個向量垂直的充要條件ab Û ab = 0 (a、b均為非零向量),設(shè) a =、b =,則 ab Û x1x2 + y1y2 = 0 。例已知 ,與的夾角為,當實數(shù)為何值時, ; 。解: 要使 ,則要 ,即 , 當 時,。 要使 ,則要 ,即 , , , 。5數(shù)量積的應(yīng)用例(2002年高考題)已知兩點,且點使、成公差小于零的等差數(shù)列 點的軌跡是什
6、么曲線? 若點坐標為,記為與的夾角,求。解:(1) 設(shè)P(x,y),由M(1,0),N(1,0)得, =(1x,y), =(1x,y), =(2,0),=2(1+x), =x2+y21,=2(1x),于是,是公差小于零的等差數(shù)列,等價于所以,點P的軌跡是以原點為圓心,為半徑的右半圓.(2)點P的坐標為(x0,y0) , , , , 。點評:本題是向量在數(shù)列與曲線方程中的應(yīng)用。能力測試認真完成!參考答案仔細核對!習(xí)題雙基細目表XL0105平面向量的數(shù)量積及其運算12345678a·b = |a|·|b|· (定義)ab = x1x2 + y1y2 (坐標運算) (數(shù)
7、量積的交換律) (數(shù)對數(shù)量積的結(jié)合律) (加法對數(shù)量積的分配律)ea = ae =|a|cosq (性質(zhì))|ab| |a|b| (性質(zhì))(a±b)a±a·bb (推論)(ab)(ab)ab (推論)XL0106平面向量的垂直ab Û ab = 0ab Û x1x2 + y1y2 = 0XL0109應(yīng)用 (兩點距離公式)cosq = (夾角公式)1判斷正誤,并簡要說明理由.·00;0·;0;·;若0,則對任一非零有·;若·,則與中至少有一個為0;對任意向量,都有(·)(·);與
8、是兩個單位向量,則;(3+2)·(32)= 94 ;= | 。解:上述8個命題中只有正確;對于:兩個向量的數(shù)量積是一個實數(shù),應(yīng)有0·;對于:應(yīng)有·0;對于:由數(shù)量積定義有···cos,這里是與的夾角,只有或時,才有··;對于:若非零向量、垂直,有·;對于:由·可知可以都非零;對于:若與共線,記。則·()·(·)(·),(·)·(·)(·)(·)若與不共線,則(·)(·)。點評:這一類問題
9、,要求學(xué)生確實把握好數(shù)量積的定義、性質(zhì)、運算律。2對任意向量 、 , 與 的大小關(guān)系是()A B C D無法確定答案:C。3 =_答案:-1 。4已知a,b,a·b,求ab,ab.解:ab(ab)aa·bb×()ab,(ab)(ab)a2a·bb22×(3)×35,ab5(2000年上海高考題)已知向量(1,2)、(3,m),若,則m 。答:4。6設(shè)A、B、C、D四點坐標依次是(1,0),(0,2),(4,3),(3,1),則四邊形ABCD為( )A.正方形B.矩形 C.菱形D.平行四邊形分析: =(1,2),=(1,2), =。又線段AB與線段DC無公共點, ABDC且|AB|=|DC|, ABCD是平行四邊形,又|=, =(5,3),=, |, ABCD不是菱形,更不是正方形。又=(4,1), 1×4+2×1=60, 不垂直于, ABCD也不是矩形,故選D。7已知a(,),b(,),則a與b的夾角是多少?分析:為求a與b夾角,需先求a·b及a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三中去年考試試卷及答案
- 2025年租賃合同下的建房計劃
- 浙江國企招聘2025金華智園至尚資產(chǎn)經(jīng)營有限公司招聘17人筆試參考題庫附帶答案詳解
- 2025綜合商務(wù)合作合同
- 孤殘兒童庇護服務(wù)社會資源動員策略考核試卷
- 聚丙烯酸甲酯靜電紡絲考核試卷
- 電氣設(shè)備在工業(yè)鍋爐控制系統(tǒng)中的應(yīng)用考核試卷
- 石油開采業(yè)的創(chuàng)新發(fā)展與價值創(chuàng)造考核試卷
- 管道工程自動化與智能化考核試卷
- 牛飼養(yǎng)常見疾病防治考核試卷
- 【武漢大學(xué)】2025DeepSeek驅(qū)動下的地圖生成報告
- (廣東二模)2025年廣東省高三高考模擬測試(二)歷史試卷(含答案)
- 高空作業(yè)簡答試題及答案
- 通信服務(wù)公司管理制度
- 2025年班組安全培訓(xùn)考試試題ab卷
- T-CHSA 082-2024 上頜竇底提升專家共識
- 《集中用餐單位落實食品安全主體責(zé)任監(jiān)督管理規(guī)定》解讀與培訓(xùn)
- 安徽省示范高中皖北協(xié)作區(qū)2025屆高三下學(xué)期第27屆聯(lián)考(一模)數(shù)學(xué)試題 含解析
- 食品安全管理制度文本(完整版)餐飲
- 思政微課紅色教育
- 傳染病防控與報告課件
評論
0/150
提交評論