




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、法向量的應(yīng)用概念:與平面垂直的向量就稱為平面的法向量。主要應(yīng)用:證線面平行,證面面平行,證線面垂直,證面面垂直, 求線面角,二面角,求點到平面的距離,異面直線的距離等等。一 證線面平行方法:證直線上的一條方向向量與平面的一條法向量垂直。例題:如圖(2),已知矩形ABCD和矩形ADEF所在平面 互相垂直,點M,N分別在對角線BD,AE上,AyzxCDFE且BM=BD,AN=AE, 求證:MN平面CDE NMB證明:以A為原點建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,且設(shè)AB=3a,AD=3b,AF=3c,則有B(3a,0,0),D(0,3b,0),F(0,0,3c),E(0,3b,3c)所以 =(
2、-3a,3b,0),=(0,-3b,-3c)=(-a,b,0), =(0,-b,-c)所以 ,又平面CDE的一個法向量是=(0,3b,0),由=(2a,0,-c)(0,3b,0)=0,所以又MN不在平面CDE內(nèi),所以MN平面CDECBAOC1B1O1A1EFyxzF1二 證面面平行E1方法:證兩個平面的法向量平行。例題:如圖,正方體中,是中點,求證:平面平面證明:設(shè)分別是平面,平面的一條法向量,設(shè)正方體的棱長是2則E(2,1,0),F(xiàn)(1,2,0),(2,2,2),(1,0,2)(0,1,2),所以 , ,由和 求得 , , 所以 所以, 所以兩個平面平行。三 證線面垂直方法:證直線上的方向向
3、量與平面的法向量 平行。例題:如圖,已知正方體ABCDA1B1C1D1中,邊長AB=2,E,F(xiàn)分別是, DC的中點。求證:D1F平面AED;zxy證明:建立空間直角坐標(biāo)系D-xyzABCDA1B1C1D1EF 則 A(2,0,0),E(2,2,1), F(0,1,0),設(shè)是平面DAE的一條法向量則由 求得 因為,所以D1F平面AED四 證面面垂直方法:證兩個平面的法向量垂直。zPDCBA例題:如圖四棱錐P-ABCD的底面為直角梯形, ABDC,PA底面ABCD, 且PA=AD=DC=AB=1y 求證:面PAD面PCDx 證明:建立空間直角坐標(biāo)系A(chǔ)- xyz,因為PA=AD=DC=AB=1所以
4、B(0,2,0),D(1,0,0),C(1,1,0),P(0,0,1)則 , , 設(shè)是平面PCD的一條法向量則由 得 又容易證得是平面PAD的法向量又, 所以面PAD面PCD五 求線面角方法:設(shè)直線與平面成的角為,直線的方向向量與平面的法向量成的角為,則有 例題:如圖,正方體,求 所成的角。分析:建立空間直角坐標(biāo)系, 求出平面的一條法向量,再求 , 所以六 求二面角方法:設(shè)為兩個平面的法向量, 為二面角的平面角,則符號取決于是銳角還是鈍角。zxyFEA1O1B1C1OABC例題:如圖,正方體, 求二面角的大小。分析:建立空間直角坐標(biāo)系O-xyz, 可求得平面 和平面的 法向量分別是(-1,1,
5、1), 又由圖可知該平面角為銳角MN所以 七 求點到平面的距離方法:在平面內(nèi)取一點N,設(shè)平面的法向量為,則向量在方向上的射影的絕對值即為點M到平面的距離d=, 例題:如圖,已知正方形ABCD的邊長為4,E、F分別是AB、AD的中點,GC平面ABCD,且GC2,求點B到平面EFG的距離分析:由題設(shè)可知CG、CB、CD兩兩互相垂直,由此,建立空間直角坐標(biāo)系Cxyz 則可寫出各點坐標(biāo),從而求得 平面GEF的一條法向量是=(1,1,3) =(0,-4,2),求得d=M八 求異面直線的距離方法: 在異面直線上取兩點M,N,是的法向量,則在方向上的投影N的絕對值即為異面直線的距離。 即 d=例2已知正方體ABCD的棱長為1,求直線與AC的距離分析:如圖,建立空間直角坐標(biāo)系xyz,則有,設(shè)n是AC與的法向量,則又n,n,可求得n=(1,1,-1) , 所以 =即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Brand KPIs for health insurance:Zurich Santander in Mexico-英文培訓(xùn)課件2025.4
- 汽車傳感器與檢測技術(shù)課件:汽車GPS導(dǎo)航轉(zhuǎn)角傳感器
- 汽車傳感器與檢測技術(shù)電子教案:熱絲式空氣流量傳感器
- 衛(wèi)生管理部門管理制度
- 中考地理復(fù)習(xí)教案第20課時 香港、澳門、臺灣省
- 從化年會活動方案
- 仙海湖公司團建活動方案
- 代溝班會活動方案
- 代購小活動策劃方案
- 以舊換新活動策劃方案
- 醫(yī)院收費室筆試題及答案
- 肥料施用與作物營養(yǎng)均衡考核試卷
- 光通信網(wǎng)絡(luò)建設(shè)與維護框架協(xié)議
- 企業(yè)風(fēng)險管理-戰(zhàn)略與績效整合(中文版-雷澤佳譯)
- 2025中考人教版八年級地理初二會考熱點專練(6大熱點)
- 城市戶外廣告管理辦法
- 心腎綜合征診療實踐指南解讀
- 骨科優(yōu)勢病種中醫(yī)診療方案
- 酒店采購管理制度及流程
- 部編版五年級下冊語文習(xí)作《習(xí)作他-了》寫作指導(dǎo)+范文+點評
- 血站面試考試試題及答案
評論
0/150
提交評論