




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、中考數(shù)學(xué)常用公式及性質(zhì)1 乘法與因式分解(ab)(ab)a2b2;(a±b)2a2±2abb2;(ab)(a2abb2)a3b3;(ab)(a2abb2)a3b3;a2b2(ab)22ab;(ab)2(ab)24ab。2 冪的運(yùn)算性質(zhì)am×anam+n;am÷anam-n;(am)namn;(ab)nanbn;()n;a-n,特別:()-n()n;a01(a0)。3 二次根式()2a(a0);丨a丨;×;(a0,b0)。4 三角不等式|a|-|b|a±b|a|+|b|定理;加強(qiáng)條件:|a|-|b|a±b|a|+|b|也成立,
2、這個(gè)不等式也可稱為向量的三角不等式其中a,b分別為向量a和向量b |a+b|a|+|b|;|a-b|a|+|b|;|a|b<=>-bab ;|a-b|a|-|b|; -|a|a|a|; 5 某些數(shù)列前n項(xiàng)之和1+2+3+4+5+6+7+8+9+n=n(n+1)/2;1+3+5+7+9+11+13+15+(2n-1)=n2 ;2+4+6+8+10+12+14+(2n)=n(n+1); 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+n3=n2(n+1)2/4; 1*2+2*3+3*4+4*5+5*6+6*7+n
3、(n+1)=n(n+1)(n+2)/3; 6 一元二次方程對(duì)于方程:ax2bxc0:求根公式是x,其中b24ac叫做根的判別式。當(dāng)0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)0時(shí),方程沒(méi)有實(shí)數(shù)根注意:當(dāng)0時(shí),方程有實(shí)數(shù)根。假設(shè)方程有兩個(gè)實(shí)數(shù)根x1和x2,那么二次三項(xiàng)式ax2bxc可分解為a(xx1)(xx2)。以a和b為根的一元二次方程是x2(ab)xab0。7 一次函數(shù)一次函數(shù)ykxb(k0)的圖象是一條直線(b是直線與y軸的交點(diǎn)的縱坐標(biāo),稱為截距)。當(dāng)k0時(shí),y隨x的增大而增大(直線從左向右上升);當(dāng)k0時(shí),y隨x的增大而減小(直線從左向右下降);特別地:當(dāng)b0時(shí),y
4、kx(k0)又叫做正比例函數(shù)(y與x成正比例),圖象必過(guò)原點(diǎn)。8 反比例函數(shù)反比例函數(shù)y(k0)的圖象叫做雙曲線。當(dāng)k0時(shí),雙曲線在一、三象限(在每一象限內(nèi),從左向右降);當(dāng)k0時(shí),雙曲線在二、四象限(在每一象限內(nèi),從左向右上升)。9 二次函數(shù)1.定義:一般地,如果是常數(shù),那么叫做的二次函數(shù)。2.拋物線的三要素:開(kāi)口方向、對(duì)稱軸、頂點(diǎn)。 的符號(hào)決定拋物線的開(kāi)口方向:當(dāng)時(shí),開(kāi)口向上;當(dāng)時(shí),開(kāi)口向下;相等,拋物線的開(kāi)口大小、形狀相同。 平行于軸或重合的直線記作.特別地,軸記作直線。3.幾種特殊的二次函數(shù)的圖像特征如下:函數(shù)解析式開(kāi)口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo)當(dāng)時(shí)開(kāi)口向上當(dāng)時(shí)開(kāi)口向下軸0,0軸(0, )(,
5、0)(,)()4.求拋物線的頂點(diǎn)、對(duì)稱軸的方法 公式法:,頂點(diǎn)是,對(duì)稱軸是直線。 配方法:運(yùn)用配方的方法,將拋物線的解析式化為的形式,得到頂點(diǎn)為(,),對(duì)稱軸是直線。 運(yùn)用拋物線的對(duì)稱性:由于拋物線是以對(duì)稱軸為軸的軸對(duì)稱圖形,對(duì)稱軸與拋物線的交點(diǎn)是頂點(diǎn)。 假設(shè)拋物線上兩點(diǎn)及y值相同,那么對(duì)稱軸方程可以表示為:5.拋物線中,的作用 決定開(kāi)口方向及開(kāi)口大小,這與中的完全一樣。 和的對(duì)稱軸是直線。,故:時(shí),對(duì)稱軸為軸;即、同號(hào)時(shí),對(duì)稱軸在軸左側(cè);即、異號(hào)時(shí),對(duì)稱軸在軸右側(cè)。 的大小決定拋物線與軸交點(diǎn)的位置。 當(dāng)時(shí),拋物線與軸有且只有一個(gè)交點(diǎn)0,: ,拋物線經(jīng)過(guò)原點(diǎn); ,與軸交于正半軸;,與軸交于負(fù)半
6、軸.軸右側(cè),那么 。6.用待定系數(shù)法求二次函數(shù)的解析式 一般式:.圖像上三點(diǎn)或三對(duì)、的值,通常選擇一般式. 頂點(diǎn)式:.圖像的頂點(diǎn)或?qū)ΨQ軸,通常選擇頂點(diǎn)式。 交點(diǎn)式:圖像與軸的交點(diǎn)坐標(biāo)、,通常選用交點(diǎn)式:。7.直線與拋物線的交點(diǎn) 軸與拋物線得交點(diǎn)為(0, )。 拋物線與軸的交點(diǎn)。 二次函數(shù)的圖像與軸的兩個(gè)交點(diǎn)的橫坐標(biāo)、,是對(duì)應(yīng)一元二次方程軸的交點(diǎn)情況可以由對(duì)應(yīng)的一元二次方程的根的判別式判定: a有兩個(gè)交點(diǎn)()拋物線與軸相交; b有一個(gè)交點(diǎn)頂點(diǎn)在軸上()拋物線與軸相切; c沒(méi)有交點(diǎn)()拋物線與軸相離。 平行于軸的直線與拋物線的交點(diǎn) 同一樣可能有0個(gè)交點(diǎn)、1個(gè)交點(diǎn)、2個(gè)交點(diǎn).當(dāng)有2個(gè)交點(diǎn)時(shí),兩交點(diǎn)的
7、縱坐標(biāo)相等,設(shè)縱坐標(biāo)為,那么橫坐標(biāo)是的兩個(gè)實(shí)數(shù)根。 一次函數(shù)的圖像與二次函數(shù)的圖像的交點(diǎn),由方程組 的解的數(shù)目來(lái)確定:a方程組有兩組不同的解時(shí)與有兩個(gè)交點(diǎn);b方程組只有一組解時(shí)與只有一個(gè)交點(diǎn);c方程組無(wú)解時(shí)與沒(méi)有交點(diǎn)。 拋物線與軸兩交點(diǎn)之間的距離:假設(shè)拋物線與軸兩交點(diǎn)為,那么 10 統(tǒng)計(jì)初步1概念:所要考察的對(duì)象的全體叫做總體,其中每一個(gè)考察對(duì)象叫做個(gè)體從總體中抽取的一部份個(gè)體叫做總體的一個(gè)樣本,樣本中個(gè)體的數(shù)目叫做樣本容量在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)(有時(shí)不止一個(gè)),叫做這組數(shù)據(jù)的眾數(shù)將一組數(shù)據(jù)按大小順序排列,把處在最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)2公式:設(shè)有n個(gè)數(shù)x
8、1,x2,xn,那么:平均數(shù)為:;極差:用一組數(shù)據(jù)的最大值減去最小值所得的差來(lái)反映這組數(shù)據(jù)的變化范圍,用這種方法得到的差稱為極差,即:極差=最大值-最小值;方差:數(shù)據(jù)、, 的方差為,那么=標(biāo)準(zhǔn)差:方差的算術(shù)平方根。數(shù)據(jù)、, 的標(biāo)準(zhǔn)差,那么=一組數(shù)據(jù)的方差越大,這組數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定。11 頻率與概率1頻率頻率=,各小組的頻數(shù)之和等于總數(shù),各小組的頻率之和等于1,頻率分布直方圖中各個(gè)小長(zhǎng)方形的面積為各組頻率。2概率如果用P表示一個(gè)事件A發(fā)生的概率,那么0PA1;P必然事件=1;P不可能事件=0;在具體情境中了解概率的意義,運(yùn)用列舉法包括列表、畫(huà)樹(shù)狀圖計(jì)算簡(jiǎn)單事件發(fā)生的概率。大量的重復(fù)實(shí)驗(yàn)時(shí)
9、頻率可視為事件發(fā)生概率的估計(jì)值;12 銳角三角形設(shè)A是ABC的任一銳角,那么A的正弦:sinA,A的余弦:cosA,A的正切:tanA并且sin2Acos2A1。0sinA1,0cosA1,tanA0A越大,A的正弦和正切值越大,余弦值反而越小。余角公式:sin(90ºA)cosA,cos(90ºA)sinA。特殊角的三角函數(shù)值:sin30ºcos60º,sin45ºcos45º,sin60ºcos30º, tan30º,tan45º1,tan60º。hl斜坡的坡度:i設(shè)坡角為,那么i
10、tan。13 正余弦定理1正弦定理 a/sinA=b/sinB=c/sinC=2R;注:其中 R 表示三角形的外接圓半徑。 正弦定理的變形公式:(1) a=2RsinA, b=2RsinB, c=2RsinC;(2) sinA : sinB : sinC = a : b : c2余弦定理 b2=a2+c2-2accosB;a2=b2+c2-2bccosA;c2=a2+b2-2abcosC; 注:C所對(duì)的邊為c,B所對(duì)的邊為b,A所對(duì)的邊為a14 三角函數(shù)公式(1) 兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A
11、+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) (2) 倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a (3) 半角公式 sin(A/2)=(1-cosA)/
12、2) sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA)ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA) (4) 和差化積 sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/
13、cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB (5) 積化和差2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) 15 平面直角坐標(biāo)系中的有關(guān)知識(shí)1對(duì)稱性:假設(shè)直角坐標(biāo)系內(nèi)一點(diǎn)Pa,b,那么P關(guān)于x軸對(duì)稱的點(diǎn)為P1a,b,P關(guān)于y軸對(duì)稱的點(diǎn)為P2a,b,關(guān)于原點(diǎn)對(duì)稱的點(diǎn)為P3a,b。2坐標(biāo)平移:假設(shè)直角坐標(biāo)系內(nèi)一點(diǎn)Pa,b向左平移h個(gè)單位,坐
14、標(biāo)變?yōu)镻ah,b,向右平移h個(gè)單位,坐標(biāo)變?yōu)镻ah,b;向上平移h個(gè)單位,坐標(biāo)變?yōu)镻a,bh,向下平移h個(gè)單位,坐標(biāo)變?yōu)镻a,bh.如:點(diǎn)A2,1向上平移2個(gè)單位,再向右平移5個(gè)單位,那么坐標(biāo)變?yōu)锳7,1。16 多邊形內(nèi)角和公式多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n2)180ºn3,n是正整數(shù),外角和等于360º17 平行線段成比例定理1平行線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。如圖:abc,直線l1與l2分別與直線a、b、c相交與點(diǎn)A、B、C和D、E、F,那么有。2推論:平行于三角形一邊的直線截其他兩邊或兩邊的延長(zhǎng)線,所得的對(duì)應(yīng)線段成比例。如圖
15、:ABC中,DEBC,DE與AB、AC相交與點(diǎn)D、E,那么有:18 直角三角形中的射影定理直角三角形中的射影定理:如圖:RtABC中,ACB90o,CDAB于D,那么有:12319 圓的有關(guān)性質(zhì)1垂徑定理:如果一條直線具備以下五個(gè)性質(zhì)中的任意兩個(gè)性質(zhì):經(jīng)過(guò)圓心;垂直弦;平分弦;平分弦所對(duì)的劣?。黄椒窒宜鶎?duì)的優(yōu)弧,那么這條直線就具有另外三個(gè)性質(zhì)注:具備,時(shí),弦不能是直徑。2兩條平行弦所夾的弧相等。3圓心角的度數(shù)等于它所對(duì)的弧的度數(shù)。4一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。5圓周角等于它所對(duì)的弧的度數(shù)的一半。6同弧或等弧所對(duì)的圓周角相等。7在同圓或等圓中,相等的圓周角所對(duì)的弧相等。890
16、186;的圓周角所對(duì)的弦是直徑,反之,直徑所對(duì)的圓周角是90º,直徑是最長(zhǎng)的弦。、9圓內(nèi)接四邊形的對(duì)角互補(bǔ)。20 三角形的內(nèi)心與外心1三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心三角形的內(nèi)心就是三內(nèi)角角平分線的交點(diǎn)。2三角形的外接圓的圓心叫做三角形的外心三角形的外心就是三邊中垂線的交點(diǎn)常見(jiàn)結(jié)論:RtABC的三條邊分別為:a、b、cc為斜邊,那么它的內(nèi)切圓的半徑;ABC的周長(zhǎng)為,面積為S,其內(nèi)切圓的半徑為r,那么21 弦切角定理及其推論1弦切角:頂點(diǎn)在圓上,并且一邊和圓相交,另一邊和圓相切的角叫做弦切角。如圖:PAC為弦切角。OPBCA2弦切角定理:弦切角度數(shù)等于它所夾的弧的度數(shù)的一半。如果A
17、C是O的弦,PA是O的切線,A為切點(diǎn),那么推論:弦切角等于所夾弧所對(duì)的圓周角作用證明角相等如果AC是O的弦,PA是O的切線,A為切點(diǎn),那么22 相交弦定理、割線定理和切割線定理1相交弦定理:圓內(nèi)的兩條弦相交,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。 如圖,即:PA·PB = PC·PD2割線定理:從圓外一點(diǎn)引圓的兩條割線,這點(diǎn)到每條割線與圓交點(diǎn)的兩條線段長(zhǎng)的積相等。如圖,即:PA·PB = PC·PD3切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。如圖,即:PC2 = PA·PB 23 面積公式S正×
18、;(邊長(zhǎng))2 S平行四邊形底×高S菱形底×高×(對(duì)角線的積),S圓R2 l圓周長(zhǎng)2R弧長(zhǎng)L S圓柱側(cè)底面周長(zhǎng)×高2rh,S全面積S側(cè)S底2rh2r2S圓錐側(cè)×底面周長(zhǎng)×母線rb, S全面積S側(cè)S底rbr2初中數(shù)學(xué)公式大全1 過(guò)兩點(diǎn)有且只有一條直線 2 兩點(diǎn)之間線段最短 3 同角或等角的補(bǔ)角相等 4 同角或等角的余角相等 5 過(guò)一點(diǎn)有且只有一條直線和直線垂直 6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9
19、同位角相等,兩直線平行 10 內(nèi)錯(cuò)角相等,兩直線平行 11 同旁內(nèi)角互補(bǔ),兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯(cuò)角相等 14 兩直線平行,同旁內(nèi)角互補(bǔ) 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180° 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23 角邊角公
20、理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線
21、、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等等角對(duì)等邊 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41 線段
22、的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42 定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形 43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線 44定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上 45逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2 ,那么這個(gè)三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360°
23、49四邊形的外角和等于360° 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于n-2×180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分 56平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對(duì)邊平行相等的四
24、邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61矩形性質(zhì)定理2 矩形的對(duì)角線相等 62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63矩形判定定理2 對(duì)角線相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等 65菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角 66菱形面積=對(duì)角線乘積的一半,即S=a×b÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分
25、,每條對(duì)角線平分一組對(duì)角 71定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的 72定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分 73逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一 點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75等腰梯形的兩條對(duì)角線相等 76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形 77對(duì)角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80
26、推論2 經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第 三邊 81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半 82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=a+b÷2 S=L×h 83 (1)比例的根本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性質(zhì) 如果ab=cd,那么(a±b)b=(c±d)d 85 (3)等比性質(zhì) 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 86 平行線分線段成比例定理 三條平行線截兩條直線,所
27、得的對(duì)應(yīng) 線段成比例 87 推論 平行于三角形一邊的直線截其他兩邊或兩邊的延長(zhǎng)線,所得的對(duì)應(yīng)線段成比例 88 定理 如果一條直線截三角形的兩邊或兩邊的延長(zhǎng)線所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例 90 定理 平行于三角形一邊的直線和其他兩邊或兩邊的延長(zhǎng)線相交,所構(gòu)成的三角形與原三角形相似 91 相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似ASA 92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93 判定定理2 兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似SAS 94
28、判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似SSS 95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三 角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似 96 性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平 分線的比都等于相似比 97 性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比 98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方 99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值 101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合 102圓的內(nèi)部可以看作是圓心的距
29、離小于半徑的點(diǎn)的集合 103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104同圓或等圓的半徑相等 105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半 徑的圓 106和線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直 平分線 107到角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線 108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距 離相等的一條直線 109定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。 110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧 111推論1 平分弦不是直徑的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩
30、條弧 平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 112推論2 圓的兩條平行弦所夾的弧相等 113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形 114定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等 116定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等 118推論2 半圓或直徑所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑 119
31、推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角 121直線L和O相交 dr 直線L和O相切 d=r 直線L和O相離 dr 122切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線 123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑 124推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn) 125推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心 126切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角 127圓的外切四邊形的兩組對(duì)邊的和相等 128弦
32、切角定理 弦切角等于它所夾的弧對(duì)的圓周角 129推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積 相等 131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項(xiàng) 132切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割 線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng) 133推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等 134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135兩圓外離 dR+r 兩圓外切 d=R+r 兩圓相交 R-rdR+r(Rr) 兩圓內(nèi)切 d=R-r(Rr)
33、 兩圓內(nèi)含dR-r(Rr) 136定理 相交兩圓的連心線垂直平分兩圓的公共弦 137定理 把圓分成n(n3): 依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形 經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形 138定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓 139正n邊形的每個(gè)內(nèi)角都等于n-2×180°n 140定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形 141正n邊形的面積Sn=pnrn2 p表示正n邊形的周長(zhǎng) 142正三角形面積3a4 a表示邊長(zhǎng) 143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些
34、角的和應(yīng)為 360°,因此k×(n-2)180°n=360°化為n-2(k-2)=4 144弧長(zhǎng)計(jì)算公式:L=n兀R180 145扇形面積公式:S扇形=n兀R2360=LR2 146內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r) 147完全平方公式:(a+b)2=a2+2ab+b2 &
35、#160; (a-b)2=a2-2ab+b2148平方差公式:(a+b)(a-b)=a2-b2還有一些,大家?guī)脱a(bǔ)充吧 實(shí)用工具:常用數(shù)學(xué)公式 公式分類 公式表達(dá)式 乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b<=>-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根與系數(shù)的關(guān)系
36、 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理 判別式 b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根 b2-4ac>0 注:方程有兩個(gè)不等的實(shí)根 b2-4ac<0 注:方程沒(méi)有實(shí)根,有共軛復(fù)數(shù)根 三角函數(shù)公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公路養(yǎng)護(hù)合同范本
- 人力資源外包合同范例
- 代理旗艦店合同范本
- 農(nóng)戶種植水稻合同范本
- 2024年中國(guó)移動(dòng)招聘考試真題
- 個(gè)人債權(quán)抵押合同范本
- 2024年西安工業(yè)大學(xué)專任教師招聘考試真題
- 企業(yè)簽訂勞務(wù)合同范本
- 供熱站拆除合同范本
- 兼職技術(shù)總工合同范本
- 2025深圳勞動(dòng)合同下載
- 設(shè)備損壞評(píng)估報(bào)告范文
- 標(biāo)準(zhǔn)和計(jì)量管理制度范文(2篇)
- 透析患者心理問(wèn)題護(hù)理干預(yù)
- 孕前口腔護(hù)理保健
- 《民航服務(wù)與溝通學(xué)》課件-第1講 服務(wù)與民航服務(wù)的概念
- 《大學(xué)生安全教育》課件 項(xiàng)目四 軍事安全
- 10KV電力配電工程施工方案
- 智能感知工程基礎(chǔ)知識(shí)單選題100道及答案解析
- 肌肉注射藥物不良反應(yīng)及預(yù)防措施研究
- 人教版數(shù)學(xué)六年級(jí)上冊(cè)第一單元測(cè)試卷
評(píng)論
0/150
提交評(píng)論