公開(kāi)課極值與導(dǎo)數(shù)教案_第1頁(yè)
公開(kāi)課極值與導(dǎo)數(shù)教案_第2頁(yè)
公開(kāi)課極值與導(dǎo)數(shù)教案_第3頁(yè)
公開(kāi)課極值與導(dǎo)數(shù)教案_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上3.3.2利用導(dǎo)數(shù)研究函數(shù)的極值 教學(xué)設(shè)計(jì)邢治宇教材分析: 利用導(dǎo)數(shù)研究函數(shù)的極值是在學(xué)生學(xué)習(xí)了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,初步具備了運(yùn)用導(dǎo)數(shù)研究函數(shù)的能力后學(xué)習(xí)的,并為利用導(dǎo)數(shù)研究函數(shù)的最值奠定了知識(shí)與方法的基礎(chǔ),起著承上啟下的作用。本節(jié)課在本單元乃至整個(gè)數(shù)學(xué)學(xué)習(xí)中都具有十分重要的地位。學(xué)情分析: 學(xué)生已經(jīng)初步學(xué)習(xí)了運(yùn)用導(dǎo)數(shù)研究函數(shù),但還不夠深入,因此在學(xué)習(xí)上還有一定困難。本節(jié)課能夠進(jìn)一步提高學(xué)生運(yùn)用導(dǎo)數(shù)研究函數(shù)的能力,體會(huì)導(dǎo)數(shù)的工具作用。 教學(xué)目標(biāo):知識(shí)與技能: 了解函數(shù)極值的定義,會(huì)從幾何圖形直觀理解函數(shù)的極值與其導(dǎo)數(shù)的關(guān)系,增強(qiáng)學(xué)生的數(shù)形結(jié)合意識(shí),提升思維水平;

2、 掌握利用導(dǎo)數(shù)求不超過(guò)三次的多項(xiàng)式函數(shù)極值的一般方法; 了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件。過(guò)程與方法: 培養(yǎng)學(xué)生觀察、分析、探究、歸納得出數(shù)學(xué)概念和規(guī)律的學(xué)習(xí)能力。情感態(tài)度與價(jià)值觀: 體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性; 培養(yǎng)學(xué)生大膽創(chuàng)新、勇于探索、互相合作的精神; 激發(fā)學(xué)生的民族自豪感,培養(yǎng)學(xué)生的愛(ài)國(guó)主義精神。教學(xué)重點(diǎn)和教學(xué)難點(diǎn):教學(xué)重點(diǎn):掌握利用導(dǎo)數(shù)求不超過(guò)三次的多項(xiàng)式函數(shù)極值的一般方法。教學(xué)難點(diǎn):函數(shù)在某點(diǎn)取得極值的必要條件和充分條件。教法學(xué)法分析:教法分析和教學(xué)用具: 本節(jié)課我將采用復(fù)習(xí)引入概念形成應(yīng)用舉例練習(xí)反饋的教學(xué)環(huán)節(jié)。并利用信息技術(shù)創(chuàng)設(shè)實(shí)際問(wèn)題的情境。發(fā)揮學(xué)

3、生學(xué)習(xí)的主動(dòng)性,使學(xué)生的學(xué)習(xí)過(guò)程成為在我引導(dǎo)下的“再創(chuàng)造”過(guò)程。學(xué)法分析 通過(guò)用導(dǎo)數(shù)研究函數(shù)的極值,提高了學(xué)生的導(dǎo)數(shù)應(yīng)用能力。通過(guò)用導(dǎo)數(shù)求不超過(guò)三次的多項(xiàng)式函數(shù)的極大值和極小值,得到求極值的一般方法。教學(xué)過(guò)程教學(xué)內(nèi)容設(shè)計(jì)意圖一、復(fù)習(xí)引入:復(fù)習(xí)利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的知識(shí)求函數(shù)單調(diào)性的步驟鞏固已學(xué)習(xí)的知識(shí),為本節(jié)課的學(xué)習(xí)做好準(zhǔn)備二、概念形成:分組討論小組匯報(bào)教師點(diǎn)撥。學(xué)生展示:yxOba定義引入:如圖,函數(shù)y=在a,b,c,d,e,f,g,h等點(diǎn)的函數(shù)值與這些點(diǎn)附近的函數(shù)值有什么關(guān)系?y=在這些點(diǎn)的導(dǎo)數(shù)值是_,在這些點(diǎn)附近,y=的導(dǎo)數(shù)的符號(hào)有什么規(guī)律? c x y d e f O g i j h

4、 定義:在x=a附近,先減后增,先_后_,連續(xù)變化,于是有=0比在點(diǎn)x=a附近其它點(diǎn)的函數(shù)值都小。我們把點(diǎn)a叫做函數(shù)y=的_,叫做函數(shù)的_.在x=b附近,先增后減,先_后_,連續(xù)變化,于是有=0比在點(diǎn)x=b附近其它點(diǎn)的函數(shù)值都大。我們把點(diǎn)b叫做函數(shù)y=的_,叫做函數(shù)的_.極小值點(diǎn)和極大值點(diǎn)統(tǒng)稱為_(kāi),極大值和極小值統(tǒng)稱為_(kāi)。用信息技術(shù)輔助教學(xué),突破難點(diǎn)。用兩個(gè)例子使學(xué)生經(jīng)歷直觀感知、觀察發(fā)現(xiàn)、歸納類比的思維過(guò)程,引導(dǎo)學(xué)生創(chuàng)新與實(shí)踐。培養(yǎng)學(xué)生大膽創(chuàng)新、勇于探索、互相合作的精神。根據(jù)探究,總結(jié)極小值點(diǎn)、極小值、極大值點(diǎn)、極大值、極值點(diǎn)、極值的定義。培養(yǎng)學(xué)生的歸納能力。教師點(diǎn)撥:1、極值是函數(shù)的局部性

5、質(zhì),反映了函數(shù)值在某一點(diǎn)附近的大小變化情況;2、極值點(diǎn)是自變量的某個(gè)值,極值指的是其函數(shù)值;3、函數(shù)的極值與導(dǎo)數(shù)的關(guān)系。(1)如果=0, 并且在附近的左側(cè) >0 ,右側(cè)<0, 那么f()是極大值。(2)如果=0, 并且在附近的左側(cè) <0 ,右側(cè)>0, 那么f()是極小值。通過(guò)教師的點(diǎn)撥,幫助學(xué)生構(gòu)建知識(shí)體系,鞏固、完善、深化對(duì)知識(shí)、規(guī)律內(nèi)涵的認(rèn)識(shí)。 體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性。三、應(yīng)用舉例:對(duì)于例題和習(xí)題,先讓學(xué)生做,并讓盡可能多的學(xué)生板演,在學(xué)生相互點(diǎn)評(píng)的基礎(chǔ)上,教師引導(dǎo)學(xué)生總結(jié)思路方法技巧,并進(jìn)行變式訓(xùn)練予以拓展。學(xué)生總結(jié):分組討論:典型例題:求函

6、數(shù)的極值。解:=(x34x+4)=x24=(x+2)(x2) 令=0,解得x1=2,x2=2下面分兩種情況討論:(1) 當(dāng)>0,即x>2,或<-2時(shí);(2) 當(dāng)<0,即-2<x<2時(shí)。當(dāng)x變化時(shí),的變化情況如下表:-2(-2,2)2+00+單調(diào)遞增單調(diào)遞減單調(diào)遞增當(dāng)x=2時(shí),有極大值,并且及極大值為=當(dāng)x=2時(shí),有極小值并且及極小值為=。函數(shù)的圖像如圖所示解題方法總結(jié):求函數(shù)y=f(x)極值(極大值、極小值)的方法:(1)求導(dǎo) ;(2)求極值點(diǎn) ; (3)討論單調(diào)性 ;(4)列表 ;(5)寫(xiě)出極值. 變式訓(xùn)練:求出函數(shù)的極值。拓展提高:拓展(1)、導(dǎo)數(shù)為0的

7、點(diǎn)一定是函數(shù)的極值點(diǎn)嗎?如若是極值,則=0。反之,=0,不一定是極值y=f(x)在一點(diǎn)的導(dǎo)數(shù)為0是函數(shù)y=f(x)在這點(diǎn)取得極值的必要條件。函數(shù)y=f(x)在點(diǎn)x0取極值的充分條件是:函數(shù)在點(diǎn)x0處的導(dǎo)數(shù)值為0在點(diǎn)附近的左側(cè)導(dǎo)數(shù)大于(小于)零,右側(cè)小于(大于)零。 拓展(2)、極大值一定比極小值大嗎?不一定極值是函數(shù)的局部性概念拓展(3)、下圖是導(dǎo)函數(shù)的圖象,試找出函數(shù) y=f(x)的極值點(diǎn),并指出哪些是極大值點(diǎn),哪些是極小值點(diǎn)。yxOx1x2x3x4x5x6ba通過(guò)典型例題鞏固學(xué)生對(duì)新知識(shí)的理解。通過(guò)對(duì)典型例題的板演,讓學(xué)生明確求極值的方法,突出本節(jié)課的重點(diǎn)。培養(yǎng)學(xué)生規(guī)范的表達(dá)能力,形成嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。作圖時(shí)先作出兩個(gè)極值點(diǎn),再根據(jù)單調(diào)性作圖。通過(guò)作圖,使學(xué)生掌握數(shù)形結(jié)合思想及作圖的一般步驟。學(xué)生總結(jié)解題方法,培養(yǎng)歸納能力。通過(guò)變式訓(xùn)練,進(jìn)一步突出重點(diǎn)。使學(xué)生從感性認(rèn)識(shí)升華到理性認(rèn)識(shí)。通過(guò) 拓展1,突出判斷極值點(diǎn)的條件,從而突破難點(diǎn)。通過(guò)拓展2幫助學(xué)生理解極值是函數(shù)的局部性質(zhì)。拓展3給的圖像是導(dǎo)函數(shù)的圖像,進(jìn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論