




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、大功率激光焊接技術(引帖)1激光焊接原理激光焊接可以采用連續(xù)或脈沖激光束加以實現(xiàn),激光焊接的原理可分為熱傳導型焊接和激光深熔焊接。功率密度小于104105 W/cm2為熱傳導焊,此時熔深淺、焊 接速度慢;功率密度大于105107 W/cm2時,金屬表面受熱作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深寬比大的特點。其中熱傳導型激光焊接原理為:激光輻射加熱待加工表面,表面熱量通過熱傳導向內部擴散,通過控制激光脈沖的寬度、能量、峰功率和重復頻率等激光參數(shù),使工件熔化,形成特定的熔池。用于齒輪焊接和冶金薄板焊接用的激光焊接機主要涉及激光深熔焊接。下面重點介紹激光深熔焊接的原理。激光深熔焊接一般采
2、用連續(xù)激光光束完成材料的連接,其冶金物理過程與電子束焊接極為相似,即能量轉換機制是通過“小孔”(Key-hole)結構來完成的。在足夠高的功率密度激光照射下,材料產生蒸發(fā)并形成小孔。這個充滿蒸氣的小孔猶如一個黑體,幾乎吸收全部的入射光束能量,孔腔內平衡溫度達2500 0C左右,熱量從這個高溫孔腔外壁傳遞出來,使包圍著這個孔腔四周的金屬熔化。小孔內充滿在光束照射下壁體材料連續(xù)蒸發(fā)產生的高溫蒸汽,小孔四壁包圍著熔融金屬,液態(tài)金屬四周包圍著固體材料(而在大多數(shù)常規(guī)焊接過程和激光傳導焊接中,能量首先沉積于工件表面,然后靠傳遞輸送到內部)??妆谕庖后w流動和壁層表面張力與孔腔內連續(xù)產生的蒸汽壓力相持并保持
3、著動態(tài)平衡。光束不斷進入小孔,小孔外的材料在連續(xù)流動,隨著光束移動,小孔始終處于流動的穩(wěn)定狀態(tài)。就是說,小孔和圍著孔壁的熔融金屬隨著前導光束前進速度向前移動,熔融金屬充填著小孔移開后留下的空隙并隨之冷凝,焊縫于是形成。上述過程的所有這一切發(fā)生得如此快,使焊接速度很容易達到每分鐘數(shù)米。2. 激光深熔焊接的主要工藝參數(shù)1)激光功率。激光焊接中存在一個激光能量密度閾值,低于此值,熔深很淺,一旦達到或超過此值,熔深會大幅度提高。只有當工件上的激光功率密度超過閾值(與材料有關),等離子體才會產生,這標志著穩(wěn)定深熔焊的進行。如果激光功率低于此閾值,工件僅發(fā)生表面熔化,也即焊接以穩(wěn)定熱傳導型進行。而當激光功
4、率密度處于小孔形成的臨界條件附近時,深熔焊和傳導焊交替進行,成為不穩(wěn)定焊接過程,導致熔深波動很大。激光深熔焊時,激光功率同時控制熔透深度和焊接速度。焊接的熔深直接與光束功率密度有關,且是入射光束功率和光束焦斑的函數(shù)。一般來說,對一定直徑的激光束,熔深隨著光束功率提高而增加。2)光束焦斑。光束斑點大小是激光焊接的最重要變量之一,因為它決定功率密度。但對高功率激光來說,對它的測量是一個難題,盡管已經(jīng)有很多間接測量技術。光束焦點衍射極限光斑尺寸可以根據(jù)光衍射理論計算,但由于聚焦透鏡像差的存在,實際光斑要比計算值偏大。最簡單的實測方法是等溫度輪廓法,即用厚紙燒焦和穿透聚丙烯板后測量焦斑和穿孔直徑。這種
5、方法要通過測量實踐,掌握好激光功率大小和光束作用的時間。3)材料吸收值。材料對激光的吸收取決于材料的一些重要性能,如吸收率、反射率、熱導率、熔化溫度、蒸發(fā)溫度等,其中最重要的是吸收率。影響材料對激光光束的吸收率的因素包括兩個方面:首先是材料的電阻系數(shù),經(jīng)過對材料拋光表面的吸收率測量發(fā)現(xiàn),材料吸收率與電阻系數(shù)的平方根成正比,而電阻系數(shù)又隨溫度而變化;其次,材料的表面狀態(tài)(或者光潔度)對光束吸收率有較重要影響,從而對焊接效果產生明顯作用。CO2激光器的輸出波長通常為10.6m,陶瓷、玻璃、橡膠、塑料等非金屬對它的吸收率在室溫就很高,而金屬材料在室溫時對它的吸收很差,直到材料一旦熔化乃至氣化,它的吸
6、收才急劇增加。采用表面涂層或表面生成氧化膜的方法,提高材料對光束的吸收很有效。4)焊接速度。焊接速度對熔深影響較大,提高速度會使熔深變淺,但速度過低又會導致材料過度熔化、工件焊穿。所以,對一定激光功率和一定厚度的某特定材料有一個合適的焊接速度范圍,并在其中相應速度值時可獲得最大熔深。圖10-2給出了1018鋼焊接速度與熔深的關系。5)保護氣體。激光焊接過程常使用惰性氣體來保護熔池,當某些材料焊接可不計較表面氧化時則也可不考慮保護,但對大多數(shù)應用場合則常使用氦、氬、氮等氣體作保護,使工件在焊接過程中免受氧化。氦氣不易電離(電離能量較高),可讓激光順利通過,光束能量不受阻礙地直達工件表面。這是激光
7、焊接時使用最有效的保護氣體,但價格比較貴。氬氣比較便宜,密度較大,所以保護效果較好。但它易受高溫金屬等離子體電離,結果屏蔽了部分光束射向工件,減少了焊接的有效激光功率,也損害焊接速度與熔深。使用氬氣保護的焊件表面要比使用氦氣保護時來得光滑。氮氣作為保護氣體最便宜,但對某些類型不銹鋼焊接時并不適用,主要是由于冶金學方面問題,如吸收,有時會在搭接區(qū)產生氣孔。使用保護氣體的第二個作用是保護聚焦透鏡免受金屬蒸氣污染和液體熔滴的濺射。特別在高功率激光焊接時,由于其噴出物變得非常有力,此時保護透鏡則更為必要。保護氣體的第三個作用是對驅散高功率激光焊接產生的等離子屏蔽很有效。金屬蒸氣吸收激光束電離成等離子云
8、,金屬蒸氣周圍的保護氣體也會因受熱而電離。如果等離子體存在過多,激光束在某種程度上被等離子體消耗。等離子體作為第二種能量存在于工作表面,使得熔深變淺、焊接熔池表面變寬。通過增加電子與離子和中性原子三體碰撞來增加電子的復合速率,以降低等離子體中的電子密度。中性原子越輕,碰撞頻率越高,復合速率越高;另一方面,只有電離能高的保護氣體,才不致因氣體本身的電離而增加電子密度。表 常用氣體和金屬的原子(分子)量和電離能材料 氦 氬 氮 鋁 鎂 鐵原子(分子)量 4 40 28 27 24 56電離能(eV) 24.46 15.68 14.5 5.96 7.61 7.83從表可知,等離子體云尺寸與采用的保護
9、氣體不同而變化,氦氣最小,氮氣次之,使用氬氣時最大。等離子體尺寸越大,熔深則越淺。造成這種差別的原因首先由于氣體分子的電離程度不同,另外也由于保護氣體不同密度引起金屬蒸氣擴散差別。氦氣電離最小,密度最小,它能很快地驅除從金屬熔池產生的上升的金屬蒸氣。所以用氦作保護氣體,可最大程度地抑制等離子體,從而增加熔深,提高焊接速度;由于質輕而能逸出,不易造成氣孔。當然,從我們實際焊接的效果看,用氬氣保護的效果還不錯。等離子云對熔深的影響在低焊接速度區(qū)最為明顯。當焊接速度提高時,它的影響就會減弱。保護氣體是通過噴嘴口以一定的壓力射出到達工件表面的,噴嘴的流體力學形狀和出口的直徑大小十分重要。它必須以足夠大
10、以驅使噴出的保護氣體覆蓋焊接表面,但為了有效保護透鏡,阻止金屬蒸氣污染或金屬飛濺損傷透鏡,噴口大小也要加以限制。流量也要加以控制,否則保護氣的層流變成紊流,大氣卷入熔池,最終形成氣孔。為了提高保護效果,還可用附加的側向吹氣的方式,即通過一較小直徑的噴管將保護氣體以一定的角度直接射入深熔焊接的小孔。保護氣體不僅抑制了工件表面的等離子體云,而且對孔內的等離子體及小孔的形成施加影響,熔深進一步增大,獲得深寬比較為理想的焊縫。但是,此種方法要求精確控制氣流量大小、方向,否則容易產生紊流而破壞熔池,導致焊接過程難以穩(wěn)定。6)透鏡焦距。焊接時通常采用聚焦方式會聚激光,一般選用63254mm(2.5”10”
11、)焦距的透鏡。聚焦光斑大小與焦距成正比,焦距越短,光斑越小。但焦距長短也影響焦深,即焦深隨著焦距同步增加,所以短焦距可提高功率密度,但因焦深小,必須精確保持透鏡與工件的間距,且熔深也不大。由于受焊接過程中產生的飛濺物和激光模式的影響,實際焊接使用的最短焦深多為焦距126mm(5”)。當接縫較大或需要通過加大光斑尺寸來增加焊縫時,可選擇254mm(10”)焦距的透鏡,在此情況下,為了達到深熔小孔效應,需要更高的激光輸出功率(功率密度)。當激光功率超過2kW時,特別是對于10.6m的CO2激光束,由于采用特殊光學材料構成光學系統(tǒng),為了避免聚焦透鏡遭光學破壞的危險,經(jīng)常選用反射聚焦方法,一般采用拋光
12、銅鏡作反射鏡。由于能有效冷卻,它常被推薦用于高功率激光束聚焦。7)焦點位置。焊接時,為了保持足夠功率密度,焦點位置至關重要。焦點與工件表面相對位置的變化直接影響焊縫寬度與深度。圖2-6表示焦點位置對1018鋼熔深及縫寬的影響。在大多數(shù)激光焊接應用場合,通常將焦點的位置設置在工件表面之下大約所需熔深的1/4處。8)激光束位置。對不同的材料進行激光焊接時,激光束位置控制著焊縫的最終質量,特別是對接接頭的情況比搭接結頭的情況對此更為敏感。例如,當淬火鋼齒輪焊接到低碳鋼鼓輪,正確控制激光束位置將有利于產生主要有低碳組分組成的焊縫,這種焊縫具有較好的抗裂性。有些應用場合,被焊接工件的幾何形狀需要激光束偏
13、轉一個角度,當光束軸線與接頭平面間偏轉角度在100度以內時,工件對激光能量的吸收不會受到影響。9)焊接起始、終止點的激光功率漸升、漸降控制。激光深熔焊接時,不管焊縫深淺,小孔現(xiàn)象始終存在。當焊接過程終止、關閉功率開關時,焊縫尾端將出現(xiàn)凹坑。另外,當激光焊層覆蓋原先焊縫時,會出現(xiàn)對激光束過度吸收,導致焊件過熱或產生氣孔。為了防止上述現(xiàn)象發(fā)生,可對功率起止點編制程序,使功率起始和終止時間變成可調,即起始功率用電子學方法在一個短時間內從零升至設置功率值,并調節(jié)焊接時間,最后在焊接終止時使功率由設置功率逐漸降至零值。1. 激光深熔焊特征及優(yōu)、缺點()激光深熔焊的特征1) 高的深寬比。因為熔融金屬圍著圓
14、柱形高溫蒸氣腔體形成并延伸向工件,焊縫就變成深而窄。2) 最小熱輸入。因為小孔內的溫度非常高,熔化過程發(fā)生得極快,輸入工件熱量很低,熱變形和熱影響區(qū)很小。3) 高致密性。因為充滿高溫蒸氣的小孔有利于焊接熔池攪拌和氣體逸出,導致生成無氣孔的熔透焊縫。焊后高的冷卻速度又易使焊縫組織細微化。4) 強固焊縫。因為熾熱熱源和對非金屬組分的充分吸收,降低雜質含量、改變夾雜尺寸和其在熔池中的分布。焊接過程無需電極或填充焊絲,熔化區(qū)受污染少,使得焊縫強度、韌性至少相當于甚至超過母體金屬。5) 精確控制。因為聚焦光點很小,焊縫可以高精確定位。激光輸出無“慣性”,可在高速下急停和重新起始,用數(shù)控光束移動技術則可焊
15、接復雜工件。6) 非接觸大氣焊接過程。因為能量來自光子束,與工件無物理接觸,所以沒有外力施加工件。另外,磁和空氣對激光都無影響。(二)激光深熔焊的優(yōu)點1) 由于聚焦激光比常規(guī)方法具有高得多的功率密度,導致焊接速度快,受熱影響區(qū)和變形都很小,還可以焊接鈦等難焊的材料。2) 因為光束容易傳輸和控制,又不需要經(jīng)常更換焊槍、噴嘴,又沒有電子束焊接所需的抽真空,顯著減少停機輔助時間,所以有荷系數(shù)和生產效率都高。3) 由于純化作用和高的冷卻速度,焊縫強度、韌性和綜合性能高。4) 由于平均熱輸入低,加工精度高,可減少再加工費用;另外,激光焊接運轉費用也較低,從而可降低工件加工成本。5) 對光束強度和精細定位
16、能有效控制,容易實現(xiàn)自動化操作。(三)激光深熔焊的缺點1) 焊接深度有限。2) 工件裝配要求高。3) 激光系統(tǒng)一次性投資較高提高大型激光加工機器人精度的方法摘要:本文介紹了大范圍、高精度5軸激光加工機器人系統(tǒng)的研究開發(fā)情況。在提高其絕對精度的前提下,對大范圍框架式機器人的結構、高精度機器人的誤差補償方法進行了探討。采用有限元分析的方法對機器人本體進行了優(yōu)化設計,確保了高精度大型激光加工機器人設計的正確性?;跍y量數(shù)據(jù),建立了機器人誤差模型,對機器人系統(tǒng)誤差進行了補償,取得了較好的結果,保證機器人系統(tǒng)的激光加工精度。 關鍵詞:激光加工;有限元分析;優(yōu)化設計;誤差模型 1引言(Introducti
17、on) 隨著制造業(yè)水平的不斷提高,激光切割和激光焊接技術已在工業(yè)界得到廣泛應用,并在一些加工領域顯示出明顯的優(yōu)越性。除激光切割和激光焊接外,激光表面工程、激光快速成型、激光微處理等技術亦日趨成熟,并逐漸應用于一些特殊的工業(yè)加工中。 目前激光加工機器人大多為兩軸或三軸的機械手,只能進行簡單的加工,而復雜曲面的加工則必須由高性能機器人來完成。針對此種現(xiàn)狀,本課題研制了大范圍、高精度5軸激光加工機器人,它可以完成復雜曲面的加工。該機器人系統(tǒng)具有如下特點:機器人本體采用高剛度框架式結構,平衡式設計,交流伺服驅動,高精度絕對碼盤檢測反饋。機器人控制器采用工業(yè)級嵌入式CPU,進一步提高控制器的運算能力,縮
18、短控制周期,提高插補精度,保證機器人的檢測精度和控制精度。建立了機器人誤差模型,解決了機器人系統(tǒng)的誤差補償問題,實現(xiàn)了機器人的高精度加工。 2總體設計方案(Schemedesign) 研制大范圍、高精度5軸框架式機器人系統(tǒng),既要保證系統(tǒng)的先進性,同時又要考慮其實用性和可靠性。由于機器人系統(tǒng)行程的加大,精度的大幅度提高,在機器人的基本結構形式、傳動系統(tǒng)的配置方式、關鍵部件如一體化傳動裝置、交流伺服電機的選用等方面,均采取了諸多技術措施來達到性能指標的要求。同時對機器人的檢測系統(tǒng)和機器人控制系統(tǒng)進行了特殊設計,保證了機器人整體系統(tǒng)的高精度和高性能。 2.1特殊設計和技術措施 (1)Y軸傳動采用雙傳
19、動型,來減少由于Z軸的傾斜引起的誤差; (2)腕部自由度的配置做了較大的改變,解決激光頭與A軸同心度帶來的誤差,并加入了激光頭姿態(tài)的調整功能; (3)X、Y梁采取了提高剛度的措施,Z梁立柱由2個增加至3個,以提高其剛度系數(shù); (4)X軸、Z軸一體化傳動裝置的動力橋,采用加長形,由340mm長改為500mm長,提高裝置的承載能力,減少變形的影響; (5)Y軸采用棄荷裝置,以減小X軸一體化傳動裝置的負載,同時加大X軸驅動電機的功率; (6)增加了X軸、Y軸一體化傳動裝置的側向直線度的整體功能,達到垂直方向的直線度由梁的平面度保證,側向直線度由調整保證; (7)X梁、Y梁采用嚴格加工工藝,確保性能穩(wěn)
20、定和高精度:專做的特種鋼管、合理的焊接工藝、人工時效處理、導軌磨床精加工等。 2.2優(yōu)化設計 在激光加工機器人的開發(fā)過程中,采用SolidEdge進行三維CAD設計,并通過有限元軟件進行模擬分析,依據(jù)分析結果進行設計修改和優(yōu)化。由于采用先進的設計手段,確保了機器人本體的優(yōu)化設計,為提高機器人的整體精度奠定了基礎。 圖1激光加工機器人外型圖3關鍵部件的有限元分析(Finiteelementanalysisofkeyparts) 在激光加工機器人的設計過程中,對其關鍵部件x梁、y梁和z梁支架用軟件進行了有限元模擬分析。模擬分析是按照梁在最大承載的位置進行計算,這樣可以保證在任何位置都有較高的安全系
21、數(shù)。 3.1模擬分析過程 在模擬分析過程中,對x梁的簡化最大,將三維模型轉化成二維圖形來分析,主要是因為x梁的結構比較簡單而且規(guī)則,受力情況也比較簡單。我們選擇的單元類型是BEAM189,這種單元的精度比較高,另外,還引入了截面特性這個參數(shù),所以,我們認為結果的準確性還是值得信任的。這樣可以省掉復雜的建模過程,將主要精力用在結果的分析上。 對y梁的分析也采用了簡化,但是采用了實體建模,y梁的結構相對比較復雜,而且受力也很復雜,采用的單元是SOLID45,單元的精度適中,考慮到y(tǒng)梁的長度,如果采用復雜的單元并細分網(wǎng)格,可能增加求解的困難,并延長計算的時間。在準確度和效率之間應該有一個合理的分配,
22、采用三維實體模型就可以大大提高精度,所以在單元類型和網(wǎng)格劃分的選擇上,可以稍微粗糙一些,這樣并不降低精度,并且能提高計算效率。 z梁支架是一個很關鍵的部件,所以,我們在盡量不簡化的情況下對其進行了模擬,倒角、連接過渡和螺紋必須要簡化掉,否則,這些部位可能增加相當多的單元數(shù),增加計算量,甚至導致求解的失敗。 3.2模擬結果分析 3.2.1x梁 x梁的模擬結果如圖2所示,通過模擬的結果我們可以看出,在受力方向上,最大的應變是0.6×10-5m,這說明我們的變形是在允許的范圍之內的。 圖2x梁在受力方向的應變分布3.2.2y梁 y梁的模擬結果如圖3所示,通過模擬的結果可以看出,在受力方向上
23、,y軸的最大變形是0.15×10-7m,完全能夠滿足實際工作中精度的要求。在受力方向上,y梁受到的應力最大也只有300N左右。 圖3y梁在受力方向的應變分布3.2.3z梁支架 z梁支架的模擬需要很詳細,因為這個支架結構比較復雜,而且受力很大,它的變形直接影響到z梁的精度,所以,我們對其在各個方向的應力和應變都進行了分析。如圖4、5、6所示為z梁支架在x、y、z3個方向的應變圖。圖7、8、9為z梁支架在x、y、z3個方向的應力圖。 圖4z梁支架在x方向的應變分布圖5z梁支架在y方向的應變分布圖6z梁支架在z方向的應變分布圖7z梁支架在x方向的應力分布圖8z梁支架在y方向的應力分布圖9z
24、梁支架在z方向的應力分布在圖中,x方向跟x梁的方向是一致的,y方向即是y梁的方向,z方向是垂直向下的。在圖4中,我們可以看到,在各個支撐板上,都承受了很大的應力,因而變形量也很大。而圖5則說明由于z梁的作用力,使得固定z梁的板發(fā)生了變形,在模擬中,我們可以得到最大變形是0.2×10-8m,這樣就保證了z梁的垂直度。圖6是z梁支架在垂直方向即z方向上的變形,通過應變的分布可以看出,z梁固定板在z方向上的變形很小,而且比較相近,大約在0.20.7×10-9m左右,對垂直方向的尺寸精度影響很小。圖7、8、9則是從應力方面來說明這個問題。 總之,從應力和應變兩方面的分析結果來看,我
25、們對z梁支架這個關鍵的零件的設計是合理的。 4機器人誤差模型(Roboterrormodel) 4.1誤差補償方法 在進行機器人誤差補償及標定時,首先要考慮機器人的精度問題。在示教再現(xiàn)作業(yè)方式下,操作者移動機器人末端執(zhí)行器到指定位置,然后通過機器人控制器記錄下此時末端執(zhí)行器的位姿,通常就是電機的碼盤值。然后,機器人可以“再現(xiàn)”已經(jīng)記錄的運動方式和編程順序。在這種編程方式下,機器人的重復精度是主要的特性參數(shù),現(xiàn)在大多數(shù)商品化工業(yè)機器人都是以這種方式工作,其重復精度在整個工作空間上都可以達到毫米數(shù)量級。因此,就精度問題來說,示教再現(xiàn)方式可以使機器人很好的工作。而對于激光加工機器人來說,它的工作方式
26、不是采用示教再現(xiàn)方式,而是采用離線編程方式,這時機器人的絕對精度成為關鍵指標。一般而言,機器人的絕對精度要比重復精度低一到兩個數(shù)量級,在如此低的精度下,機器人是無論如何也不能滿足工作需要。造成這種情況的原因主要是機器人控制器根據(jù)機器人的運動學模型來確定機器人末端執(zhí)行器的位置,而這個理論上的模型與實際機器人的物理模型存在一定誤差。因此,對機器人運動學模型進行誤差補償進而提高機器人的絕對精度是目前機器人技術領域急需解決的問題。 一般情況下,機器人誤差分為幾何誤差和非幾何誤差。其中幾何誤差包括桿件參數(shù)誤差,理論參考坐標系與實際基準坐標系的誤差、關節(jié)軸線的不平行度、零位偏差等;非幾何因素包括關節(jié)和連桿
27、的彈性形變、齒輪間隙、齒輪傳動誤差、熱形變等。如果對機器人的幾何誤差進行了很好的補償,絕對精度就可以大大提高,只有對于特定的需要提高絕對精度的應用時才考慮進行非幾何誤差的補償。 要提高機器人的絕對精度,可以從兩方面入手,一是采用“避免”誤差的方法,即針對產生機器人誤差的各種誤差源,采用高精密加工手段加工機器人各零部件,結合高精密裝配技術進行裝配。二是采用綜合補償技術,即采用現(xiàn)代的測量手段,對所測得的數(shù)據(jù)進行分析,輔以適當?shù)难a償算法,對機器人的誤差進行補償以達到減小誤差的目的。 由于激光加工機器人的精度要求很高,需要采用多種方法進行誤差綜合補償。首先采用“避免”誤差的方法。在機器人的結構設計中,
28、采用合理的結構,使機器人的變形盡可能小。在加工制造過程中,關鍵的部件采用高精度的加工技術和裝配工藝。但是該方法對機器人經(jīng)過運行,產生由于機械磨損、元件性能降低以及構件自身動態(tài)特性等因素帶來的誤差則無能為力。其次通過綜合補償技術來進一步提高機器人精度。即根據(jù)實際測量的機器人誤差,在機器人模型中引入恰當?shù)难a償算法,來減小機器人的誤差,實現(xiàn)改善和提高機器人精度的目的。 4。2機器人誤差模型的建立 運動學模型的選擇是決定機器人絕對精度的重要因素之一。它必須正確地對影響機器人末端位姿的各種因素建模。增加運動學模型的復雜度有助于提高機器人的絕對精度,但是也要付出降低機器人性能中其它特性的代價,因此建模時要
29、綜合考慮各方面的因素。 激光加工機器人為框架結構的機器人,我們認為采用網(wǎng)格化的誤差補償方法較合適,該方法可以補償機器人幾何誤差和某些非幾何誤差。 根據(jù)機器人補償精度的要求,可以把激光加工機器人工作空間劃分為網(wǎng)格如圖10所示。根據(jù)不同的補償精度的要求,網(wǎng)格的疏密程度可以不同。實際的網(wǎng)格劃分為14×11×9。 圖 10機器人工作空間網(wǎng)格劃分圖X方向的誤差補償公式 Y方向的誤差補償公式 Z方向的誤差補償公式 其中 Li、Lj、Lk 分別為 X方向、Y方向和 Z方向的網(wǎng) 格點 ,Lxi、Lyj、Lzk分別為 X方向、Y方向和 Z方向的 位置補償值 。 在機器人系統(tǒng)未補償前 ,機器人
30、系統(tǒng)的最大誤差為 0.2mm,經(jīng)過補償后的機器人誤差為 0.04mm,完全滿足機器人激光加工精度的要求 。 5結論 ( Conclusion) 目前激光加工機器人完成調試 ,運行結果表明系統(tǒng)完全達到預期指標 。該機器人準備用于汽車大型模具的表面激光處理 ,現(xiàn)在正在進行激光加工處理工藝實驗 。不遠的將來即可達到實用化程度 ,投入實際使用 。 參考文獻 (References) 1 Chia P Day. Robot Accuracy Issues and Methods of ImprovementA. 19 th ISIRC, Chicago:April,1989. 16 -26 2 Brya
31、n Greenway. RobotaccuracyJ. Industrial Robot,2000,27( 4):257 - 265 3 Joachim O Berg. Path and Orientation Accuracy of Industrial RobotJ. Advanced Manufacturing Technology, 1993, 86 2-71 4劉振宇,陳英林,曲道奎,徐方。機器人標定技術研究 J。機器人 , 2001, 24( 5 ) :447 - 450 作者簡介 : 曲道奎 (1961-),男,研究員、博導。研究領域:機器人學,智能控制。 徐方 (1962-),
32、男,研究員。研究領域:機器人學,自動控制。 (end)激光切割中的焦點位置檢測方法研究引言 激光切割加工具有切割精度高、切割速度快、熱效應低、無污染、無噪音等優(yōu)點,在汽車、船舶、航空航天和電子工業(yè)中都得到了廣泛的應用。而激光切割加工質量與激光焦點與工件之間的相對位置有著密切的關系,保證激光焦點和切割對象之間的合理的相對位置是保證激光切割加工質量的關鍵之一。 激光聚焦的焦點位置無法直接測量,但可以通過間接方法檢測。對于一個激光切割加工系統(tǒng),其焦點位置是由聚焦鏡的光學焦點決定的,所以在聚焦鏡一定情況下其位置是不變的(不考慮聚焦鏡的熱效應),因此可以通過檢測聚焦鏡和被加工對象之間的相對位置來間接檢測
33、焦點和被加工對象之間的位置關系。 激光焦點和被加工對象之間的相對位置可以通過電感位移傳感器和電容傳感器來檢測,在使用中各有優(yōu)缺點。電感傳感器的響應頻率較低,不太適用于高速加工和像!維加工這樣需要非接觸檢測的場合;電容傳感器,具有響應速度快,檢測精度高等優(yōu)點,但在使用過程中存在非線性和易受激光切割加工過程中產生的等離子云和噴渣的干擾的影響。 本文將系統(tǒng)討論激光切割加工中激光焦點位置誤差的產生途徑和自動消除誤差的控制系統(tǒng)的組成。在此基礎上分別討論了兩種傳感器檢測系統(tǒng)組成以及實際使用中存在的不足和克服的方法。 1 激光切割過程中焦點位置誤差的產生 在激光切割過程中,產生焦點和被加工對象表面之間相對位
34、置發(fā)生變化的因素很多,被加工工件表面凸凹不平、工件裝夾方式、機床的幾何誤差以及機床在負載力下的變形、工件在加工過程中的熱變形等都會造成激光焦點位置和理想給定位置(編程位置)發(fā)生偏差。有些誤差(如機床的幾何誤差)具有規(guī)律性,可以通過定量補償方法進行補償,但有些誤差為隨機誤差,只能通過在線檢測和控制來消除,這些誤差是: 1.1 工件幾何誤差 激光切割的對象為板材或覆蓋件型零件,由于各種?因的影響,加工對象表面具有起伏不平,且在切割過程中的熱效應的影響也會產生薄板零件的表面變形,對于1維激光加工,覆蓋件在壓制成型過程中也會產生表面的不平,所有這些,都會產生激光焦點與被加工對象表面的位置與理想位置發(fā)生
35、隨機變化。 1.2 工件裝夾裝置產生的誤差 激光切割加工的工件是放在針狀工作臺上,由于加工誤差、長時間與工件之間的磨損和激光的燒傷,針床會出現(xiàn)凸凹不平,這種不平也會產生薄鋼板和激光焦點之間的位置的隨機誤差。 1.3 編程產生的誤差 在1維激光切割加工過程中,復雜曲面上的加工軌跡是通過直線、圓弧等擬合的,這些擬合曲線和實際曲線存在一定誤差,這些誤差使得實際焦點和加工對象表面的相對位置和理想編程位置產生一定誤差。而有些示教編程系統(tǒng)也會引入一些偏差。 2激光切割過程中焦點位置在線檢測與控制系統(tǒng)的組成 如圖1所示,激光切割焦點位置在線檢測與控制系統(tǒng)由控制器、檢測系統(tǒng)、執(zhí)行裝置等部分組成。 根據(jù)焦點位置
36、檢測控制系統(tǒng)和系統(tǒng)的關系,焦點位置檢測控制系統(tǒng)分為獨立式和集成式兩種。 獨立式焦點位置檢測與控制系統(tǒng)采用單獨的坐標軸進行焦點位置誤差的補償控制,機械結構復雜,成本較高,但可與各種數(shù)控系統(tǒng)和激光切割機床配合使用。 而集成式采用激光切割機床本身的一個進給軸(對平面加工)或多個進給軸的合成(對于1維切割加工)運動來進行焦點位置誤差的補償。這種方式具有結構簡單、成本低,易于調整等優(yōu)點,但要求和數(shù)控系統(tǒng)統(tǒng)一設計,對數(shù)控系統(tǒng)的開放性要求較高。 2.1 電容傳感器檢測電路 如圖2所示,電容傳感器檢測電路由調諧振蕩器、信號放大器、晶體穩(wěn)頻振蕩器、同步電路、混頻電路、信號處理電路等將電容量信號變成對應頻率的脈沖
37、信號,$? (通過對脈沖信號進行頻率采樣和處理,得到相應的電容量。這里的電容為切割噴嘴和切割對象之間兩個極板形成的電容。顯然其電容量除了與兩個極板的面積有關外,還與極板之間的介質、極板之間的距離有關。而這個距離就與激光聚焦鏡和工件之間的距離有關,也就是與激光焦點與工件之間的距離有關,所以電容量近似和焦點位置與切割對象之間的距離有關。這就是電容傳感器檢測焦點位置的原理。 從圖中可以看出,頻率和焦點位置誤差之間的關系為非線性關系,必須通過計算機進行線性化處理。同時,由于電容量還和極板之間的介質有關,所以檢測結果容易受加工過程中產生的等離子云和噴渣影響,必須加以克服。 2.2 電感傳感器檢測電路 如
38、圖1所示,由于采用了最新的大規(guī)模集成電路,電感傳感器的檢測電路比較簡單,且集成電路采用了新的調制解調方法和算法,減少了以前的檢測圖1焦點位置控制系統(tǒng)框圖圖"外差式調頻檢測電路方法由于傳感器的激勵信號的相角、頻率以及幅值漂移對檢測結果的影響,大大提高了檢測精度和穩(wěn)定性。 傳感器信號通過處理后得到與傳感器測頭位移成正比的電壓信號,通過變換電路轉換成相應的頻率信號,通過計算機處理得到了焦點的位置誤差信號。 由于電感傳感器的固有特性,對被測信號的頻率有一定的限制(幾百),不太適用于高速加工場合,同時,由于其為接觸式檢測方式,只能用于平面加工場合。 3 切割過程中等離子云對焦點位置檢測系統(tǒng)的影
39、響 在工件尚未被切穿的瞬間,激光和金屬相互作用,在噴嘴和加工對象之間產生云霧狀等離子體,改變電容極板之間的介質,從而對電容傳感器產生干擾。在正常切割過程中,輔助氣體將等離子體從切縫中吹散,對電容傳感器產生影響較小。但如果加工速度太快和剛開始切割時,由于工件未被完全切穿,激光照射點附近會產生等離子體云,對電容傳感器產生干擾,嚴重時甚至使傳感器無法正常工作,嚴重影響加工質量。圖(為等離子體干擾示意圖。 由電磁學原理可知,相鄰的兩個極板間電容量為 C=S/h 式中-極板之間介電常數(shù))一般為(1) S-極板相對有效面積 h-兩極板間距離 如果沒有等離子體的干擾,那么,根據(jù)式(1)所測到的電容就和極板(
40、噴嘴和加工對象)之間距離成反比,由電容量可以方便求出兩極板間距離,進而求出焦點和被加工對象之間的相對位置。 但是,當噴嘴和被加工對象之間存在等離子體或噴渣時,電容極板之間的電介質就不是空氣了,其介電常數(shù)就發(fā)生變化。由電容?理公式,此時兩個極板間電容量為: C'= S1 /(h-h1)+h1/1 +S2/h (2) 式中1-等離子體的介電常數(shù) h1-等離子體云的厚度 S1 + S2 =S分別為有等離子云或噴渣的區(qū)域和無等離子云或噴渣的區(qū)域的面積。 如果等離子云均勻分布于噴嘴和被加工對象之間的一定高度范圍之內,則電容傳感器所測得的兩極板間距離為: h'=(h-h1)+ h1/1 (
41、3) 檢測的誤差理論值: h = h'-h = h1 (/1 -1) (4) 從式(4)可知,誤差的大小由極板間等離子體云的厚度及等離子體的介電常數(shù)決定。而等離子體介電常數(shù)具有非常大的值,可以達到105的數(shù)量級。所以由式 (4)可以看出等離子云或噴渣對檢測結果的影響是非常大的,文獻24得出,如果等離子體云的厚度為12mm,則由電容傳感器檢測的兩極板間距離的理論誤差也達到12mm,顯然達不到激光焦點位置檢測的精度指標(為±0.2mm)。 4 傳感器優(yōu)化設計技術減少等離子云對檢測結果的影響 等離子體對電容傳感器的干擾是由于等離子體改變了電容兩極板之間的介質。因此,為了消除等離子體
42、對電容傳感器的干擾,就要使電容兩極板之間的介質不受等離子體的影響,可以加大圓環(huán)形極板的中心小孔和將電容傳感器移至等離子云以外兩種方法來實現(xiàn)。 (1) 要消除等離子體對電容量的影響,就要將等離子體置于電容傳感器的極板之外??紤]到等離子云是沿切割點周圍分布的,因此可以如圖5所示:將圓環(huán)形極板的中心小孔直徑擴大至23mm并嵌入絕緣的耐高溫陶瓷材料,由于電容傳感器極板是空心的,在不考慮邊緣效應的情況下,照射點附近的等離子體云對傳感器電容量和檢測值不產生影響,所以采用這種辦法能有效地減小等離子云的干擾影響。 (2) 對于平面激光切割加工,還可以通過機械傳動方法進行間接測量。即通過一機械裝置跟隨被加工對象
43、運動,將機械裝置的上端和檢測傳感器形成極板,通過檢測傳感器和這個機械裝置之間的距離來間接檢測激光焦點和被加工對象之間的位置。這種方法可以最大限度避免了離子云和噴渣對檢測精度的影響,也發(fā)揮了電容傳感器響應迅速的優(yōu)點。 5 結論 激光焦點位置檢測與控制是激光切割加工的關鍵技術之一,對于快速切割加工,焦點位置檢測精度和快速性將直接影響到焦點位置的控制精度和加工質量,電容傳感器具有檢測靈敏度高、響應快速的優(yōu)點,可以通過計算機系統(tǒng)的線性化來克服其非線性; 通過特殊的傳感器結構來消除加工過程中產生的等離子云和噴渣對檢測結果的影響,提高其在激光切割加工系統(tǒng)中的使用效果。前言
44、0; 激光焊接,特別是激光深熔焊接是一個非常復雜的物理化學過程,涉及到激光材料等離子體之間的相互作用。但是在激光焊接過程中影響并決定焊縫熔深等焊縫成型狀況的是激光功率、焊接速度、離焦量及焦點尺寸等焊接規(guī)范參數(shù),其中離焦量(在激光焊接中,一般用離焦量來表征激光光斑及焦點尺寸)是焊縫熔深的重要影響因素之一。 在電弧焊中,人們常采用焊接線能量或熱輸入(二者的單位均為J·m-1)來描述和評價焊接過程中電弧電壓、焊接電流和焊接速度等焊接規(guī)范參數(shù)對焊縫熔深的影響,但是這兩個參數(shù)都沒有考慮電弧作用面積對焊縫熔深的影響。 如果用
45、電弧焊中的焊接線能量或熱輸入來綜合評價激光焊接過程中焊接規(guī)范參數(shù)對焊縫熔深的影響,則不能反映離焦量及焦點尺寸對焊縫熔深的影響。若考慮離焦量的影響,用熱輸入來評價激光焊接過程中焊接規(guī)范參數(shù)對焊縫熔深的影響,則容易和電弧焊中的熱輸入在物理意義上混淆。 目前,在激光焊接的研究中,還沒有一個參數(shù)能夠綜合體現(xiàn)焊接規(guī)范參數(shù)對焊接過程的影響。為了綜合評價激光焊接過程中焊接規(guī)范參數(shù)對焊縫熔深的影響以及區(qū)別電弧焊中的熱輸入,本文定義了焊接體能量,并研究了Nd:YAG激光深熔焊接過程中焊接體能量對焊縫熔深的影響。1 焊接體能量的定義 為了能
46、夠綜合評價激光功率、焊接速度、激光輻照面積(離焦量)以及焦點尺寸等焊接規(guī)范參數(shù)對焊縫熔深的影響,引入焊接體能量的概念,并將焊接體能量qV的定義為: (1) 式中:Q激光功率; V焊接速度。 S為輻照在小孔內的激光束光斑面積,實驗用的Nd:YAG激光器經(jīng)焦距為200 mm的透鏡輸出的激光光斑面積與離焦量關系的擬合關系式為: (2) 式中:z離焦量;
47、 R0激光束焦點半徑。 因此,焊接體能量又可以表示為: (3) 從焊接體能量的定義中可以看出,焊接體能量的物理意義為單位時間內的激光功率密度或單位面積內的焊接線能量,其單位為J·m-3,不同于電弧焊中焊接線能量和熱輸入的物理意義和單位J·m-1。 從焊接體能量的定義可以看出,焊接體能量可由激光功率、焊接速度、及離焦量及激光束焦點半徑計算得出。圖1為焊接體能量隨激光功率、焊接速
48、度和離焦量等焊接規(guī)范參數(shù)的變化。從焊接體能量的定義及圖1中可以看出,焊接體能量與激光功率成正比關系,與焊接速度成反比關系,與焦點尺寸成平方關系,而與離焦量成指數(shù)關系。焊接體能量的變化能夠體現(xiàn)激光功率、焊接速度、離焦量等焊接規(guī)范參數(shù)的變化。 2 焊接體能量對焊縫熔深的影響 2.1 試驗條件 實驗用的激光器為額定功率為2 kW的Nd:YAG固體激光器,輸出波長為1.06 m的連續(xù)波激光,激光束由內徑為0.6 mm的光纖傳輸,經(jīng)焦距為200 mm的透鏡聚焦輸出激光束焦點半徑為0.3 mm,工件為250×100×1.8 mm 的Q235鋼板,同
49、軸保護氣為Ar氣。 (a) 激光功率 (b) 焊接速度 (c) 離焦量 圖1 焊接體能量隨焊接規(guī)范參數(shù)的變化 本文的主要目的在于研究焊接體能量對焊縫熔深的影響,因此為了減少接頭形式及其尺寸等因素的影響,實驗采用Nd:YAG激光平板堆焊,深熔焊接模式,并且只測量工件未焊透時的焊縫熔深。 通過激光功率、焊接速度、離焦量的離散變化實現(xiàn)了焊接體能量的變化。實驗過程中的焊接規(guī)范參數(shù)變化如表1所示。表1 焊接規(guī)范參數(shù)的變化 變化焊接規(guī)范參數(shù)的變化范圍 其他焊接規(guī)范參數(shù) 激光功率 Q /W 9001
50、200 V30 mm·s-1, z0 mm, Uf=20 l·min-1 焊接速度V/(mms-1) 3060 Q1250 W, z0 mm, Uf=20 l·min-1 離焦量 z /mm z: 4.52.0 z: 3.05.0 Q1500 W, V30 mm·s-1, Uf=25 l·min-1 2.2 焊接體能量對焊縫熔深的影響 在焊接體能量的定義(1)式和(3)式中,焊接速度表征了激光束對小孔輻照時間的長短,而Q/S或 則表明了輻照在孔內的激光功率密度的大小。因此,輻照在小孔孔內的焊接體
51、能量從激光輻照時間和功率密度兩方面影響、決定著小孔深度和焊縫熔深。由于孔底液態(tài)金屬層的厚度很小,其對焊縫熔深的影響很小,因而在激光深熔焊接研究中,人們通常將焊縫熔深視作小孔深度來處理。 圖2為在激光功率、焊接速度及離焦量變化時焊縫熔深隨焊接體能量的變化。 (a) 激光功率 (b) 焊接速度 (c) 離焦量 圖2 焊接規(guī)范參數(shù)變化時焊接體能量對焊縫熔深的影響 焊接體能量與激光功率呈正比,激光功率密度隨著激光功率增大而增大,焊接體能量也隨之增大。因而在單位時間內將有更多的激光束能量輻照到小孔底部,激光束對孔底的輻照加熱作用增強,孔底蒸發(fā)的材料越多,焊縫熔深也就越深。如圖2a所示。 焊接體能量與焊接速度呈反比關系,隨著焊接速度的加快,激光束對小孔的輻照時間越短,輻照在小孔內的焊接體能量就越小,則孔底蒸發(fā)的材料就越少,焊縫熔深就越淺。如圖2b所示。 焊接體能量與離焦量呈指數(shù)關系,且在理論上關于z0 mm對稱(在實際焊接過程中,由于激光束焦點位置的漂移,使焊接體能量并不關于z0 mm對稱,而是向入焦方向偏移了一定距離,本文中試驗中激光束焦點位置的偏移為入焦1mm)。在離焦量變化過程中,隨著激光束焦點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高三一輪復習課后習題化學考點規(guī)范練30有機化合物的結構特點與研究方法
- 折光儀器項目可行性研究報告
- 中國微功率繼電器行業(yè)發(fā)展監(jiān)測及發(fā)展趨勢預測報告
- 2025年中國漁業(yè)基地服務市場供需現(xiàn)狀及投資戰(zhàn)略研究報告
- 企業(yè)內部智慧教育平臺的交互設計與實踐
- 2025年中國功能糖行業(yè)市場供需格局及行業(yè)前景展望報告
- 基于教育心理學的個性化學習路徑設計研究
- 互動式學習模式下的教育技術發(fā)展
- 高中數(shù)學選修說課比
- 【可行性報告】2025年鋼軌相關行業(yè)可行性分析報告
- “五育”融合背景下小學數(shù)學教學策略探究
- 低空具身智能頻譜管控的研究
- 第15屆全國海洋知識競賽參考試指導題庫(含答案)
- 膽管癌的相關知識
- 2025年天津市專業(yè)人員繼續(xù)教育試題及答案3
- 構建可持續(xù)發(fā)展的社區(qū)醫(yī)養(yǎng)結合服務模式
- 化工生產班組管理
- 臨床膽汁酸檢測
- 液體的壓強創(chuàng)新實驗及教學設計
- 上海對外經(jīng)貿大學《市場營銷學通論》2023-2024學年第一學期期末試卷
- 《酒店禮儀知識培訓》課件
評論
0/150
提交評論