




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、數(shù)據(jù)挖掘復(fù)習(xí)題單選題1. 某超市研究銷售紀(jì)錄數(shù)據(jù)后發(fā)現(xiàn),買啤酒的人很大概率也會(huì)購買尿布,這種屬于數(shù)據(jù)挖掘的哪類問題?(A) A. 關(guān)聯(lián)規(guī)則發(fā)現(xiàn) B. 聚類 C. 分類 D. 自然語言處理2. 以下兩種描述分別對(duì)應(yīng)哪兩種對(duì)分類算法的評(píng)價(jià)標(biāo)準(zhǔn)? (A) (a)警察抓小偷,描述警察抓的人中有多少個(gè)是小偷的標(biāo)準(zhǔn)。 (b)描述有多少比例的小偷給警察抓了的標(biāo)準(zhǔn)。 A. Precision, Recall B. Recall, Precision A. Precision, ROC D. Recall, ROC3. 將原始數(shù)據(jù)進(jìn)行集成、變換、維度規(guī)約、數(shù)值規(guī)約是在以下哪個(gè)步驟的任務(wù)?(C) A. 頻繁模式挖
2、掘 B. 分類和預(yù)測 C. 數(shù)據(jù)預(yù)處理 D. 數(shù)據(jù)流挖掘4. 當(dāng)不知道數(shù)據(jù)所帶標(biāo)簽時(shí),可以使用哪種技術(shù)促使帶同類標(biāo)簽的數(shù)據(jù)與帶其他標(biāo)簽的數(shù)據(jù)相分離?(B) A. 分類 B. 聚類 C. 關(guān)聯(lián)分析 D. 隱馬爾可夫鏈5. 什么是KDD? (A) A. 數(shù)據(jù)挖掘與知識(shí)發(fā)現(xiàn) B. 領(lǐng)域知識(shí)發(fā)現(xiàn) C. 文檔知識(shí)發(fā)現(xiàn) D. 動(dòng)態(tài)知識(shí)發(fā)現(xiàn)6. 使用交互式的和可視化的技術(shù),對(duì)數(shù)據(jù)進(jìn)行探索屬于數(shù)據(jù)挖掘的哪一類任務(wù)?(A) A. 探索性數(shù)據(jù)分析 B. 建模描述 C. 預(yù)測建模 D. 尋找模式和規(guī)則7. 為數(shù)據(jù)的總體分布建模;把多維空間劃分成組等問題屬于數(shù)據(jù)挖掘的哪一類任務(wù)?(B) A. 探索性數(shù)據(jù)分析 B. 建
3、模描述 C. 預(yù)測建模 D. 尋找模式和規(guī)則8. 建立一個(gè)模型,通過這個(gè)模型根據(jù)已知的變量值來預(yù)測其他某個(gè)變量值屬于數(shù)據(jù)挖掘的哪一類任務(wù)?(C) A. 根據(jù)內(nèi)容檢索 B. 建模描述 C. 預(yù)測建模 D. 尋找模式和規(guī)則9. 用戶有一種感興趣的模式并且希望在數(shù)據(jù)集中找到相似的模式,屬于數(shù)據(jù)挖掘哪一類任務(wù)?(A) A. 根據(jù)內(nèi)容檢索 B. 建模描述 C. 預(yù)測建模 D. 尋找模式和規(guī)則 11.下面哪種不屬于數(shù)據(jù)預(yù)處理的方法? (D)A變量代換 B離散化 C 聚集 D 估計(jì)遺漏值 12. 假設(shè)12個(gè)銷售價(jià)格記錄組已經(jīng)排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92
4、, 204, 215 使用如下每種方法將它們劃分成四個(gè)箱。等頻(等深)劃分時(shí),15在第幾個(gè)箱子內(nèi)? (B)A 第一個(gè) B 第二個(gè) C 第三個(gè) D 第四個(gè) 13.上題中,等寬劃分時(shí)(寬度為50),15又在哪個(gè)箱子里? (A)A 第一個(gè) B 第二個(gè) C 第三個(gè) D 第四個(gè) 14.下面哪個(gè)不屬于數(shù)據(jù)的屬性類型:(D)A 標(biāo)稱 B 序數(shù) C 區(qū)間 D相異 15. 在上題中,屬于定量的屬性類型是:(C)A 標(biāo)稱 B 序數(shù) C區(qū)間 D 相異 16. 只有非零值才重要的二元屬性被稱作:( C )A 計(jì)數(shù)屬性 B 離散屬性 C非對(duì)稱的二元屬性 D 對(duì)稱屬性 17. 以下哪種方法不屬于特征選擇的標(biāo)準(zhǔn)方法: (D
5、)A嵌入 B 過濾 C 包裝 D 抽樣 18.下面不屬于創(chuàng)建新屬性的相關(guān)方法的是: (B)A特征提取 B特征修改 C映射數(shù)據(jù)到新的空間 D特征構(gòu)造 19. 考慮值集1、2、3、4、5、90,其截?cái)嗑担╬=20%)是 (C)A 2 B 3 C 3.5 D 5 20. 下面哪個(gè)屬于映射數(shù)據(jù)到新的空間的方法? (A)A 傅立葉變換 B特征加權(quán) C 漸進(jìn)抽樣 D維歸約 21. 熵是為消除不確定性所需要獲得的信息量,投擲均勻正六面體骰子的熵是: (B)A 1比特 B 2.6比特 C 3.2比特 D 3.8比特 22. 假設(shè)屬性income的最大最小值分別是12000元和98000元。利用最大最小規(guī)范化
6、的方法將屬性的值映射到0至1的范圍內(nèi)。對(duì)屬性income的73600元將被轉(zhuǎn)化為:(D)A 0.821 B 1.224 C 1.458 D 0.716 23.假定用于分析的數(shù)據(jù)包含屬性age。數(shù)據(jù)元組中age的值如下(按遞增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70, 問題:使用按箱平均值平滑方法對(duì)上述數(shù)據(jù)進(jìn)行平滑,箱的深度為3。第二個(gè)箱子值為:(A)A 18.3 B 22.6 C 26.8 D 27.9 24. 考慮值集12 24 33 2 4 55 68 26,其四分位數(shù)極差是:(A)
7、A 31 B 24 C 55 D 3 25. 一所大學(xué)內(nèi)的各年紀(jì)人數(shù)分別為:一年級(jí)200人,二年級(jí)160人,三年級(jí)130人,四年級(jí)110人。則年級(jí)屬性的眾數(shù)是: (A)A 一年級(jí) B二年級(jí) C 三年級(jí) D 四年級(jí) 26. 下列哪個(gè)不是專門用于可視化時(shí)間空間數(shù)據(jù)的技術(shù): (B)A 等高線圖 B餅圖 C 曲面圖 D 矢量場圖 27. 在抽樣方法中,當(dāng)合適的樣本容量很難確定時(shí),可以使用的抽樣方法是: (D)A 有放回的簡單隨機(jī)抽樣 B無放回的簡單隨機(jī)抽樣 C分層抽樣 D 漸進(jìn)抽樣28. 數(shù)據(jù)倉庫是隨著時(shí)間變化的,下面的描述不正確的是 (C)A. 數(shù)據(jù)倉庫隨時(shí)間的變化不斷增加新的數(shù)據(jù)內(nèi)容;B. 捕捉到
8、的新數(shù)據(jù)會(huì)覆蓋原來的快照;C. 數(shù)據(jù)倉庫隨事件變化不斷刪去舊的數(shù)據(jù)內(nèi)容;D. 數(shù)據(jù)倉庫中包含大量的綜合數(shù)據(jù),這些綜合數(shù)據(jù)會(huì)隨著時(shí)間的變化不斷地進(jìn)行重新綜合.29. 關(guān)于基本數(shù)據(jù)的元數(shù)據(jù)是指: (D)A. 基本元數(shù)據(jù)與數(shù)據(jù)源,數(shù)據(jù)倉庫,數(shù)據(jù)集市和應(yīng)用程序等結(jié)構(gòu)相關(guān)的信息;B. 基本元數(shù)據(jù)包括與企業(yè)相關(guān)的管理方面的數(shù)據(jù)和信息;C. 基本元數(shù)據(jù)包括日志文件和簡歷執(zhí)行處理的時(shí)序調(diào)度信息;D. 基本元數(shù)據(jù)包括關(guān)于裝載和更新處理,分析處理以及管理方面的信息.30. 下面關(guān)于數(shù)據(jù)粒度的描述不正確的是: (C)A. 粒度是指數(shù)據(jù)倉庫小數(shù)據(jù)單元的詳細(xì)程度和級(jí)別;B. 數(shù)據(jù)越詳細(xì),粒度就越小,級(jí)別也就越高;C.
9、數(shù)據(jù)綜合度越高,粒度也就越大,級(jí)別也就越高;D. 粒度的具體劃分將直接影響數(shù)據(jù)倉庫中的數(shù)據(jù)量以及查詢質(zhì)量.31. 有關(guān)數(shù)據(jù)倉庫的開發(fā)特點(diǎn),不正確的描述是: (A)A. 數(shù)據(jù)倉庫開發(fā)要從數(shù)據(jù)出發(fā);B. 數(shù)據(jù)倉庫使用的需求在開發(fā)出去就要明確;C. 數(shù)據(jù)倉庫的開發(fā)是一個(gè)不斷循環(huán)的過程,是啟發(fā)式的開發(fā);D. 在數(shù)據(jù)倉庫環(huán)境中,并不存在操作型環(huán)境中所固定的和較確切的處理流,數(shù)據(jù)倉庫中數(shù)據(jù)分析和處理更靈活,且沒有固定的模式32. 在有關(guān)數(shù)據(jù)倉庫測試,下列說法不正確的是: (D)A. 在完成數(shù)據(jù)倉庫的實(shí)施過程中,需要對(duì)數(shù)據(jù)倉庫進(jìn)行各種測試.測試工作中要包括單元測試和系統(tǒng)測試.B. 當(dāng)數(shù)據(jù)倉庫的每個(gè)單獨(dú)組件完
10、成后,就需要對(duì)他們進(jìn)行單元測試.C. 系統(tǒng)的集成測試需要對(duì)數(shù)據(jù)倉庫的所有組件進(jìn)行大量的功能測試和回歸測試.D. 在測試之前沒必要制定詳細(xì)的測試計(jì)劃.33. OLAP技術(shù)的核心是: (D)A. 在線性;B. 對(duì)用戶的快速響應(yīng);C. 互操作性.D. 多維分析;34. 關(guān)于OLAP的特性,下面正確的是: (D)(1)快速性 (2)可分析性 (3)多維性 (4)信息性 (5)共享性A. (1) (2) (3)B. (2) (3) (4)C. (1) (2) (3) (4)D. (1) (2) (3) (4) (5)35. 關(guān)于OLAP和OLTP的區(qū)別描述,不正確的是: (C)A. OLAP主要是關(guān)于如
11、何理解聚集的大量不同的數(shù)據(jù).它與OTAP應(yīng)用程序不同.B. 與OLAP應(yīng)用程序不同,OLTP應(yīng)用程序包含大量相對(duì)簡單的事務(wù).C. OLAP的特點(diǎn)在于事務(wù)量大,但事務(wù)內(nèi)容比較簡單且重復(fù)率高.D. OLAP是以數(shù)據(jù)倉庫為基礎(chǔ)的,但其最終數(shù)據(jù)來源與OLTP一樣均來自底層的數(shù)據(jù)庫系統(tǒng),兩者面對(duì)的用戶是相同的.36. OLAM技術(shù)一般簡稱為”數(shù)據(jù)聯(lián)機(jī)分析挖掘”,下面說法正確的是: (D)A. OLAP和OLAM都基于客戶機(jī)/服務(wù)器模式,只有后者有與用戶的交互性;B. 由于OLAM的立方體和用于OLAP的立方體有本質(zhì)的區(qū)別.C. 基于WEB的OLAM是WEB技術(shù)與OLAM技術(shù)的結(jié)合.D. OLAM服務(wù)器通
12、過用戶圖形借口接收用戶的分析指令,在元數(shù)據(jù)的知道下,對(duì)超級(jí)立方體作一定的操作.37. 關(guān)于OLAP和OLTP的說法,下列不正確的是: (A)A. OLAP事務(wù)量大,但事務(wù)內(nèi)容比較簡單且重復(fù)率高.B. OLAP的最終數(shù)據(jù)來源與OLTP不一樣.C. OLTP面對(duì)的是決策人員和高層管理人員.D. OLTP以應(yīng)用為核心,是應(yīng)用驅(qū)動(dòng)的.38. 設(shè)X=1,2,3是頻繁項(xiàng)集,則可由X產(chǎn)生_(C)_個(gè)關(guān)聯(lián)規(guī)則。A、4 B、5 C、6 D、7 40. 概念分層圖是_(B)_圖。A、無向無環(huán) B、有向無環(huán) C、有向有環(huán) D、無向有環(huán)41. 頻繁項(xiàng)集、頻繁閉項(xiàng)集、最大頻繁項(xiàng)集之間的關(guān)系是: (C)A、頻繁項(xiàng)集 頻繁
13、閉項(xiàng)集 =最大頻繁項(xiàng)集B、頻繁項(xiàng)集 = 頻繁閉項(xiàng)集 最大頻繁項(xiàng)集C、頻繁項(xiàng)集 頻繁閉項(xiàng)集 最大頻繁項(xiàng)集D、頻繁項(xiàng)集 = 頻繁閉項(xiàng)集 = 最大頻繁項(xiàng)集42. 考慮下面的頻繁3-項(xiàng)集的集合:1,2,3,1,2,4,1,2,5,1,3,4,1,3,5,2,3,4,2,3,5,3,4,5假定數(shù)據(jù)集中只有5個(gè)項(xiàng),采用 合并策略,由候選產(chǎn)生過程得到4-項(xiàng)集不包含(C)A、1,2,3,4 B、1,2,3,5 C、1,2,4,5 D、1,3,4,543.下面選項(xiàng)中t不是s的子序列的是 ( C )A、s= t=B、s= t=C、s= t=D、s= t=44. 在圖集合中發(fā)現(xiàn)一組公共子結(jié)構(gòu),這樣的任務(wù)稱為 ( B
14、 )A、頻繁子集挖掘 B、頻繁子圖挖掘 C、頻繁數(shù)據(jù)項(xiàng)挖掘 D、頻繁模式挖掘45. 下列度量不具有反演性的是 (D)A、 系數(shù) B、幾率 C、Cohen度量 D、興趣因子46. 下列_(A)_不是將主觀信息加入到模式發(fā)現(xiàn)任務(wù)中的方法。A、與同一時(shí)期其他數(shù)據(jù)對(duì)比B、可視化C、基于模板的方法D、主觀興趣度量47. 下面購物籃能夠提取的3-項(xiàng)集的最大數(shù)量是多少(C)ID 購買項(xiàng)1 牛奶,啤酒,尿布2 面包,黃油,牛奶3 牛奶,尿布,餅干4 面包,黃油,餅干5 啤酒,餅干,尿布6 牛奶,尿布,面包,黃油7 面包,黃油,尿布8 啤酒,尿布9 牛奶,尿布,面包,黃油10 啤酒,餅干A、1 B、2 C、3
15、D、448. 以下哪些算法是分類算法,A,DBSCAN B,C4.5 C,K-Mean D,EM (B)49. 以下哪些分類方法可以較好地避免樣本的不平衡問題, A,KNN B,SVM C,Bayes D,神經(jīng)網(wǎng)絡(luò) (A) 50. 決策樹中不包含一下哪種結(jié)點(diǎn),A,根結(jié)點(diǎn)(root node) B,內(nèi)部結(jié)點(diǎn)(internal node) C,外部結(jié)點(diǎn)(external node) D,葉結(jié)點(diǎn)(leaf node) (C)51. 不純性度量中Gini計(jì)算公式為(其中c是類的個(gè)數(shù)) (A)A, B, C, D, (A)53. 以下哪項(xiàng)關(guān)于決策樹的說法是錯(cuò)誤的 (C)A. 冗余屬性不會(huì)對(duì)決策樹的準(zhǔn)確率
16、造成不利的影響 B. 子樹可能在決策樹中重復(fù)多次 C. 決策樹算法對(duì)于噪聲的干擾非常敏感 D. 尋找最佳決策樹是NP完全問題54. 在基于規(guī)則分類器的中,依據(jù)規(guī)則質(zhì)量的某種度量對(duì)規(guī)則排序,保證每一個(gè)測試記錄都是由覆蓋它的“最好的”規(guī)格來分類,這種方案稱為 (B)A. 基于類的排序方案 B. 基于規(guī)則的排序方案 C. 基于度量的排序方案 D. 基于規(guī)格的排序方案。 55. 以下哪些算法是基于規(guī)則的分類器 (A) A. C4.5 B. KNN C. Na?ve Bayes D. ANN56. 如果規(guī)則集R中不存在兩條規(guī)則被同一條記錄觸發(fā),則稱規(guī)則集R中的規(guī)則為(C);A, 無序規(guī)則 B,窮舉規(guī)則
17、C, 互斥規(guī)則 D,有序規(guī)則57. 如果對(duì)屬性值的任一組合,R中都存在一條規(guī)則加以覆蓋,則稱規(guī)則集R中的規(guī)則為(B)A, 無序規(guī)則 B,窮舉規(guī)則 C, 互斥規(guī)則 D,有序規(guī)則58. 如果規(guī)則集中的規(guī)則按照優(yōu)先級(jí)降序排列,則稱規(guī)則集是 (D)A, 無序規(guī)則 B,窮舉規(guī)則 C, 互斥規(guī)則 D,有序規(guī)則59. 如果允許一條記錄觸發(fā)多條分類規(guī)則,把每條被觸發(fā)規(guī)則的后件看作是對(duì)相應(yīng)類的一次投票,然后計(jì)票確定測試記錄的類標(biāo)號(hào),稱為(A) A, 無序規(guī)則 B,窮舉規(guī)則 C, 互斥規(guī)則 D,有序規(guī)則60. 考慮兩隊(duì)之間的足球比賽:隊(duì)0和隊(duì)1。假設(shè)65%的比賽隊(duì)0勝出,剩余的比賽隊(duì)1獲勝。隊(duì)0獲勝的比賽中只有3
18、0%是在隊(duì)1的主場,而隊(duì)1取勝的比賽中75%是主場獲勝。如果下一場比賽在隊(duì)1的主場進(jìn)行隊(duì)1獲勝的概率為 (C)A,0.75 B,0.35 C,0.4678 D, 0.573861. 以下關(guān)于人工神經(jīng)網(wǎng)絡(luò)(ANN)的描述錯(cuò)誤的有 (A)A,神經(jīng)網(wǎng)絡(luò)對(duì)訓(xùn)練數(shù)據(jù)中的噪聲非常魯棒 B,可以處理冗余特征 C,訓(xùn)練ANN是一個(gè)很耗時(shí)的過程 D,至少含有一個(gè)隱藏層的多層神經(jīng)網(wǎng)絡(luò)62. 通過聚集多個(gè)分類器的預(yù)測來提高分類準(zhǔn)確率的技術(shù)稱為 (A) A,組合(ensemble) B,聚集(aggregate) C,合并(combination) D,投票(voting)63. 簡單地將數(shù)據(jù)對(duì)象集劃分成不重疊的子集
19、,使得每個(gè)數(shù)據(jù)對(duì)象恰在一個(gè)子集中,這種聚類類型稱作( B ) A、層次聚類 B、劃分聚類 C、非互斥聚類 D、模糊聚類64. 在基本K均值算法里,當(dāng)鄰近度函數(shù)采用( A )的時(shí)候,合適的質(zhì)心是簇中各點(diǎn)的中位數(shù)。 A、曼哈頓距離 B、平方歐幾里德距離 C、余弦距離 D、Bregman散度 65.( C )是一個(gè)觀測值,它與其他觀測值的差別如此之大,以至于懷疑它是由不同的機(jī)制產(chǎn)生的。 A、邊界點(diǎn) B、質(zhì)心 C、離群點(diǎn) D、核心點(diǎn)66. BIRCH是一種( B )。 A、分類器 B、聚類算法 C、關(guān)聯(lián)分析算法 D、特征選擇算法67. 檢測一元正態(tài)分布中的離群點(diǎn),屬于異常檢測中的基于( A )的離群點(diǎn)
20、檢測。 A、統(tǒng)計(jì)方法 B、鄰近度 C、密度 D、聚類技術(shù)68.( C )將兩個(gè)簇的鄰近度定義為不同簇的所有點(diǎn)對(duì)的平均逐對(duì)鄰近度,它是一種凝聚層次聚類技術(shù)。 A、MIN(單鏈) B、MAX(全鏈) C、組平均 D、Ward方法69.( D )將兩個(gè)簇的鄰近度定義為兩個(gè)簇合并時(shí)導(dǎo)致的平方誤差的增量,它是一種凝聚層次聚類技術(shù)。 A、MIN(單鏈) B、MAX(全鏈) C、組平均 D、Ward方法70. DBSCAN在最壞情況下的時(shí)間復(fù)雜度是( B )。 A、O(m) B、O(m2) C、O(log m) D、O(m*log m)71. 在基于圖的簇評(píng)估度量表里面,如果簇度量為proximity(Ci
21、 , C),簇權(quán)值為mi ,那么它的類型是( C )。 A、基于圖的凝聚度 B、基于原型的凝聚度 C、基于原型的分離度 D、基于圖的凝聚度和分離度72. 關(guān)于K均值和DBSCAN的比較,以下說法不正確的是( A )。 A、K均值丟棄被它識(shí)別為噪聲的對(duì)象,而DBSCAN一般聚類所有對(duì)象。 B、K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念。 C、K均值很難處理非球形的簇和不同大小的簇,DBSCAN可以處理不同大小和不同形狀的簇。 D、K均值可以發(fā)現(xiàn)不是明顯分離的簇,即便簇有重疊也可以發(fā)現(xiàn),但是DBSCAN會(huì)合并有重疊的簇。73. 以下是哪一個(gè)聚類算法的算法流程:構(gòu)造k最近鄰圖。使
22、用多層圖劃分算法劃分圖。repeat:合并關(guān)于相對(duì)互連性和相對(duì)接近性而言,最好地保持簇的自相似性的簇。until:不再有可以合并的簇。( C )。 A、MST B、OPOSSUM C、Chameleon D、JarvisPatrick(JP)74. 考慮這么一種情況:一個(gè)對(duì)象碰巧與另一個(gè)對(duì)象相對(duì)接近,但屬于不同的類,因?yàn)檫@兩個(gè)對(duì)象一般不會(huì)共享許多近鄰,所以應(yīng)該選擇( D )的相似度計(jì)算方法。 A、平方歐幾里德距離 B、余弦距離 C、直接相似度 D、共享最近鄰75. 以下屬于可伸縮聚類算法的是( A )。A、CURE B、DENCLUE C、CLIQUE D、OPOSSUM76. 以下哪個(gè)聚類算
23、法不是屬于基于原型的聚類( D )。 A、模糊c均值 B、EM算法 C、SOM D、CLIQUE77. 關(guān)于混合模型聚類算法的優(yōu)缺點(diǎn),下面說法正確的是( B )。 A、當(dāng)簇只包含少量數(shù)據(jù)點(diǎn),或者數(shù)據(jù)點(diǎn)近似協(xié)線性時(shí),混合模型也能很好地處理。 B、混合模型比K均值或模糊c均值更一般,因?yàn)樗梢允褂酶鞣N類型的分布。 C、混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇。 D、混合模型在有噪聲和離群點(diǎn)時(shí)不會(huì)存在問題。78. 以下哪個(gè)聚類算法不屬于基于網(wǎng)格的聚類算法( D )。 A、STING B、WaveCluster C、MAFIA D、BIRCH79. 一個(gè)對(duì)象的離群點(diǎn)得分是該對(duì)象周圍密度的逆。這是基于(
24、C )的離群點(diǎn)定義。 A概率 B、鄰近度 C、密度 D、聚類80. 下面關(guān)于JarvisPatrick(JP)聚類算法的說法不正確的是( D )。 A、JP聚類擅長處理噪聲和離群點(diǎn),并且能夠處理不同大小、形狀和密度的簇。 B、JP算法對(duì)高維數(shù)據(jù)效果良好,尤其擅長發(fā)現(xiàn)強(qiáng)相關(guān)對(duì)象的緊致簇。 C、JP聚類是基于SNN相似度的概念。 D、JP聚類的基本時(shí)間復(fù)雜度為O(m)。第一章1、數(shù)據(jù)倉庫就是一個(gè)面向主題的、集成的、相對(duì)穩(wěn)定的、反映歷史變化的數(shù)據(jù)集合。2、元數(shù)據(jù)是描述數(shù)據(jù)倉庫內(nèi)數(shù)據(jù)的結(jié)構(gòu)和建立方法的數(shù)據(jù),它為訪問數(shù)據(jù)倉庫提供了一個(gè)信息目錄,根據(jù)數(shù)據(jù)用途的不同可將數(shù)據(jù)倉庫的元數(shù)據(jù)分為技術(shù)元數(shù)據(jù)和業(yè)務(wù)元
25、數(shù)據(jù)兩類。3、數(shù)據(jù)處理通常分成兩大類:聯(lián)機(jī)事務(wù)處理和聯(lián)機(jī)分析處理。4、多維分析是指以“維”形式組織起來的數(shù)據(jù)(多維數(shù)據(jù)集)采取切片、切塊、鉆取和旋轉(zhuǎn)等各種分析動(dòng)作,以求剖析數(shù)據(jù),使擁護(hù)能從不同角度、不同側(cè)面觀察數(shù)據(jù)倉庫中的數(shù)據(jù),從而深入理解多維數(shù)據(jù)集中的信息。5、ROLAP是基于關(guān)系數(shù)據(jù)庫的OLAP實(shí)現(xiàn),而MOLAP是基于多維數(shù)據(jù)結(jié)構(gòu)組織的OLAP實(shí)現(xiàn)。6、數(shù)據(jù)倉庫按照其開發(fā)過程,其關(guān)鍵環(huán)節(jié)包括數(shù)據(jù)抽取、數(shù)據(jù)存儲(chǔ)于管理和數(shù)據(jù)表現(xiàn)等。7、數(shù)據(jù)倉庫系統(tǒng)的體系結(jié)構(gòu)根據(jù)應(yīng)用需求的不同,可以分為以下4種類型:兩層架構(gòu)、獨(dú)立型數(shù)據(jù)集合、以來型數(shù)據(jù)結(jié)合和操作型數(shù)據(jù)存儲(chǔ)和邏輯型數(shù)據(jù)集中和實(shí)時(shí)數(shù)據(jù)倉庫。8、操作
26、型數(shù)據(jù)存儲(chǔ)實(shí)際上是一個(gè)集成的、面向主題的、可更新的、當(dāng)前值的(但是可“揮發(fā)”的)、企業(yè)級(jí)的、詳細(xì)的數(shù)據(jù)庫,也叫運(yùn)營數(shù)據(jù)存儲(chǔ)。9、“實(shí)時(shí)數(shù)據(jù)倉庫”以為著源數(shù)據(jù)系統(tǒng)、決策支持服務(wù)和倉庫倉庫之間以一個(gè)接近實(shí)時(shí)的速度交換數(shù)據(jù)和業(yè)務(wù)規(guī)則。10、從應(yīng)用的角度看,數(shù)據(jù)倉庫的發(fā)展演變可以歸納為5個(gè)階段:以報(bào)表為主、以分析為主、以預(yù)測模型為主、以運(yùn)營導(dǎo)向?yàn)橹骱鸵詫?shí)時(shí)數(shù)據(jù)倉庫和自動(dòng)決策為主。第二章1、調(diào)和數(shù)據(jù)是存儲(chǔ)在企業(yè)級(jí)數(shù)據(jù)倉庫和操作型數(shù)據(jù)存儲(chǔ)中的數(shù)據(jù)。2、抽取、轉(zhuǎn)換、加載過程的目的是為決策支持應(yīng)用提供一個(gè)單一的、權(quán)威數(shù)據(jù)源。因此,我們要求ETL過程產(chǎn)生的數(shù)據(jù)(即調(diào)和數(shù)據(jù)層)是詳細(xì)的、歷史的、規(guī)范的、可理解的、
27、即時(shí)的和質(zhì)量可控制的。3、數(shù)據(jù)抽取的兩個(gè)常見類型是靜態(tài)抽取和增量抽取。靜態(tài)抽取用于最初填充數(shù)據(jù)倉庫,增量抽取用于進(jìn)行數(shù)據(jù)倉庫的維護(hù)。4、粒度是對(duì)數(shù)據(jù)倉庫中數(shù)據(jù)的綜合程度高低的一個(gè)衡量。粒度越小,細(xì)節(jié)程度越高,綜合程度越低,回答查詢的種類越多。5、使用星型模式可以從一定程度上提高查詢效率。因?yàn)樾切湍J街袛?shù)據(jù)的組織已經(jīng)經(jīng)過預(yù)處理,主要數(shù)據(jù)都在龐大的事實(shí)表中。6、維度表一般又主鍵、分類層次和描述屬性組成。對(duì)于主鍵可以選擇兩種方式:一種是采用自然鍵,另一種是采用代理鍵。7、雪花型模式是對(duì)星型模式維表的進(jìn)一步層次化和規(guī)范化來消除冗余的數(shù)據(jù)。8、數(shù)據(jù)倉庫中存在不同綜合級(jí)別的數(shù)據(jù)。一般把數(shù)據(jù)分成4個(gè)級(jí)別:早
28、期細(xì)節(jié)級(jí)、當(dāng)前細(xì)節(jié)級(jí)、輕度綜合級(jí)和高度綜合級(jí)。第三章1、SQL Server SSAS提供了所有業(yè)務(wù)數(shù)據(jù)的同意整合試圖,可以作為傳統(tǒng)報(bào)表、在線分析處理、關(guān)鍵性能指示器記分卡和數(shù)據(jù)挖掘的基礎(chǔ)。2、數(shù)據(jù)倉庫的概念模型通常采用信息包圖法來進(jìn)行設(shè)計(jì),要求將其5個(gè)組成部分(包括名稱、維度、類別、層次和度量)全面地描述出來。3、數(shù)據(jù)倉庫的邏輯模型通常采用星型圖法來進(jìn)行設(shè)計(jì),要求將星型的各類邏輯實(shí)體完整地描述出來。4、按照事實(shí)表中度量的可加性情況,可以把事實(shí)表對(duì)應(yīng)的事實(shí)分為4種類型:事務(wù)事實(shí)、快照事實(shí)、線性項(xiàng)目事實(shí)和事件事實(shí)。5、確定了數(shù)據(jù)倉庫的粒度模型以后,為提高數(shù)據(jù)倉庫的使用性能,還需要根據(jù)擁護(hù)需求設(shè)計(jì)
29、聚合模型。6、在項(xiàng)目實(shí)施時(shí),根據(jù)事實(shí)表的特點(diǎn)和擁護(hù)的查詢需求,可以選用時(shí)間、業(yè)務(wù)類型、區(qū)域和下屬組織等多種數(shù)據(jù)分割類型。7、當(dāng)維表中的主鍵在事實(shí)表中沒有與外鍵關(guān)聯(lián)時(shí),這樣的維稱為退化維。它于事實(shí)表并無關(guān)系,但有時(shí)在查詢限制條件(如訂單號(hào)碼、出貨單編號(hào)等)中需要用到。8、維度可以根據(jù)其變化快慢分為元變化維度、緩慢變化維度和劇烈變化維度三類。9、數(shù)據(jù)倉庫的數(shù)據(jù)量通常較大,且數(shù)據(jù)一般很少更新,可以通過設(shè)計(jì)和優(yōu)化索引結(jié)構(gòu)來提高數(shù)據(jù)存取性能。10、數(shù)據(jù)倉庫數(shù)據(jù)庫常見的存儲(chǔ)優(yōu)化方法包括表的歸并與簇文件、反向規(guī)范化引入冗余、表的物理分割(分區(qū))。第四章1、關(guān)聯(lián)規(guī)則的經(jīng)典算法包括Apriori算法和FP-gr
30、owth算法,其中FP-grownth算法的效率更高。2、如果L2=a,b,a,c,a,d,b,c,b,d,則連接產(chǎn)生的C3=a,b,c,a,b,d,a,c,d,b,c,d再經(jīng)過修剪,C3=a,b,c,a,b,d3、設(shè)定supmin=50%,交易集如則L1=A,B,C L2=A,CT1 A B CT2 A CT3 A D T4 B E F第五章1、分類的過程包括獲取數(shù)據(jù)、預(yù)處理、分類器設(shè)計(jì)和分類決策。2、分類器設(shè)計(jì)階段包含三個(gè)過程:劃分?jǐn)?shù)據(jù)集、分類器構(gòu)造和分類器測試。3、分類問題中常用的評(píng)價(jià)準(zhǔn)則有精確度、查全率和查準(zhǔn)率和集合均值。4、支持向量機(jī)中常用的核函數(shù)有多項(xiàng)式核函數(shù)、徑向基核函數(shù)和S型核
31、函數(shù)。第六章1、聚類分析包括連續(xù)型、二值離散型、多值離散型和混合類型4種類型描述屬性的相似度計(jì)算方法。2、連續(xù)型屬性的數(shù)據(jù)樣本之間的距離有歐氏距離、曼哈頓距離和明考斯基距離。3、劃分聚類方法對(duì)數(shù)據(jù)集進(jìn)行聚類時(shí)包含三個(gè)要點(diǎn):選種某種距離作為數(shù)據(jù)樣本減的相似性度量、選擇評(píng)價(jià)聚類性能的準(zhǔn)則函數(shù)和選擇某個(gè)初始分類,之后用迭代的方法得到聚類結(jié)果,使得評(píng)價(jià)聚類的準(zhǔn)則函數(shù)取得最優(yōu)值。4、層次聚類方法包括凝聚型和分解型兩中層次聚類方法。填空題20分,簡答題25分,計(jì)算題2個(gè)(25分),綜合題30分1、數(shù)據(jù)倉庫的組成?P2數(shù)據(jù)倉庫數(shù)據(jù)庫,數(shù)據(jù)抽取工具,元數(shù)據(jù),訪問工具,數(shù)據(jù)集市,數(shù)據(jù)倉庫管理,信息發(fā)布系統(tǒng)2、數(shù)
32、據(jù)挖掘技術(shù)對(duì)聚類分析的要求有哪幾個(gè)方面?P131可伸縮性;處理不同類型屬性的能力;發(fā)現(xiàn)任意形狀聚類的能力;減小對(duì)先驗(yàn)知識(shí)和用戶自定義參數(shù)的依賴性;處理噪聲數(shù)據(jù)的能力;可解釋性和實(shí)用性3、數(shù)據(jù)倉庫在存儲(chǔ)和管理方面的特點(diǎn)與關(guān)鍵技術(shù)?P7數(shù)據(jù)倉庫面對(duì)的是大量數(shù)據(jù)的存儲(chǔ)與管理并行處理針對(duì)決策支持查詢的優(yōu)化支持多維分析的查詢模式4、常見的聚類算法可以分為幾類?P132基于劃分的聚類算法,基于層次的聚類算法,基于密度的聚類算法,基于網(wǎng)格的聚類算法,基于模型的聚類算法 等。5、一個(gè)典型的數(shù)據(jù)倉庫系統(tǒng)的組成?P12數(shù)據(jù)源、數(shù)據(jù)存儲(chǔ)與管理、OLAP服務(wù)器、前端工具與應(yīng)用6、 數(shù)據(jù)倉庫常見的存儲(chǔ)優(yōu)化方法?P71表
33、的歸并與簇文件;反向規(guī)范化,引入冗余;表的物理分割。7、 數(shù)據(jù)倉庫發(fā)展演變的5個(gè)階段?P20以報(bào)表為主以分析為主以預(yù)測模型為主以運(yùn)行向?qū)橹饕詫?shí)時(shí)數(shù)據(jù)倉庫、自動(dòng)決策應(yīng)用為主8、 ID3算法主要存在的缺點(diǎn)?P116(1)ID3算法在選擇根結(jié)點(diǎn)和各內(nèi)部結(jié)點(diǎn)中的分枝屬性時(shí),使用信息增益作為評(píng)價(jià)標(biāo)準(zhǔn)。信息增益的缺點(diǎn)是傾向于選擇取值較多的屬性,在有些情況下這類屬性可能不會(huì)提供太多有價(jià)值的信息。(2)ID3算法只能對(duì)描述屬性為離散型屬性的數(shù)據(jù)集構(gòu)造決策樹。9、 簡述數(shù)據(jù)倉庫ETL軟件的主要功能和對(duì)產(chǎn)生數(shù)據(jù)的目標(biāo)要求。P30ETL軟件的主要功能:數(shù)據(jù)的抽取,數(shù)據(jù)的轉(zhuǎn)換,數(shù)據(jù)的加載對(duì)產(chǎn)生數(shù)據(jù)的目標(biāo)要求:詳細(xì)的、歷史的、規(guī)范化的、可理解的、即時(shí)的、質(zhì)量可控制的10、 簡述分類器設(shè)計(jì)階段包含的3個(gè)過程。劃分?jǐn)?shù)據(jù)集,分類器構(gòu)造,分類器測試11、 什么是數(shù)據(jù)清洗?P33數(shù)據(jù)清洗是一種使用模式識(shí)別和其他技術(shù),在將原始數(shù)據(jù)轉(zhuǎn)換和移到數(shù)據(jù)倉庫之前來升級(jí)原始數(shù)據(jù)質(zhì)量的技術(shù)。12、 支持度和置信度的計(jì)算公式及數(shù)據(jù)計(jì)算(P90)找出所有的規(guī)則X Y , 使支持度和置信度分別大于門限支持度: 事務(wù)中X和Y同時(shí)發(fā)生的比例,P(X Y)置信度:項(xiàng)集X發(fā)生時(shí),Y同時(shí)發(fā)生的條件概率P(Y|X)Example:13、利用信息包圖設(shè)計(jì)數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)藥店合作合同范本
- 丹麥工作合同范本
- 辦理消防驗(yàn)收合同范本
- 個(gè)人工資合同范本
- 入股公司項(xiàng)目合同范本
- 2024年云浮聯(lián)通招聘考試真題
- 東莞代理記賬合同范本
- 2025東風(fēng)公司全球校園招聘筆試參考題庫附帶答案詳解
- 買賣車訂金合同范本
- 2024年河南濮陽工學(xué)院籌建處 引進(jìn)考試真題
- 預(yù)防流感和諾如病毒課件
- 春節(jié)后復(fù)產(chǎn)復(fù)工培訓(xùn)
- 刑事案件及分析報(bào)告
- 《紅樓夢》重點(diǎn)情節(jié)梳理
- 《感染性休克的治療》課件
- 《消費(fèi)者權(quán)益與法律保護(hù)》課程培訓(xùn)教案課件
- 中醫(yī)基礎(chǔ)理論-
- 水利站工作計(jì)劃
- 五年級(jí)下冊音樂課程綱要
- 食材配送、包裝、運(yùn)輸、驗(yàn)收、售后服務(wù)方案應(yīng)急預(yù)案
- 萬千教育學(xué)前讀懂兒童的思維:支持自主游戲中的圖式探索
評(píng)論
0/150
提交評(píng)論