版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、液態(tài)結(jié)構(gòu)與凝固技術(shù)Liquid Structure and Solidification Technology液態(tài)金屬及鑄造技術(shù)研究所田學(xué)雷Tel.: 88392412 (O);(M)Email: tian_ (交作業(yè))2田學(xué)雷簡(jiǎn)介研究?jī)?nèi)容:實(shí)驗(yàn)研究液態(tài)金屬的微觀結(jié)構(gòu)及其在凝固過(guò)程中的演變規(guī)律,建立凝固過(guò)程的宏微觀模型。以各種宏微觀模型為基礎(chǔ),進(jìn)行凝固過(guò)程的模擬計(jì)算,確定完善的鑄造工藝;鑄造模具的CAD軟件研究與開(kāi)發(fā);開(kāi)發(fā)新型金屬材料及其加工工藝。研究方向:液態(tài)金屬微觀結(jié)構(gòu)及其凝固過(guò)程的研究和模擬計(jì)算3Introduction to the Contents Stru
2、ctures of Liquid Metals Geometry Structures of Liquid Metals Physical Properties of Liquid Metals Measurement of Structures of Liquid Metals Brief Introduction to Physics of Liquid Metals Solidification Technology Directional solidification & Single Crystal Growth Rapid solidification Continuous Cas
3、ting Solidification Problem in Preparation of Metal Matrix Composites Solidification under Special Conditions4ReferencesN. H. March Liquid Metals: Concepts and Theory Cambridge University Press, 2005.9 周堯和,胡壯麒,介萬(wàn)奇. 凝固技術(shù)凝固技術(shù) 北京:機(jī)械工業(yè)出版社. 1998.9 第一版5Other References T. E. Faber An Introduction to the T
4、heory of Liquid Metals Cambridge University Press 2010Takamichi IidaThe physical properties of liquid metals Clarendon Press, 1988.6邊秀房, 王偉民, 李輝, 馬家驥. 金屬熔體結(jié)構(gòu)金屬熔體結(jié)構(gòu) 上海:上海交通大學(xué)出版社. 2003, 第一版張榮生,劉海洪. 快速凝固技術(shù)快速凝固技術(shù). (超星) 北京:冶金工業(yè)出版社. 1994, 第一版 Research Articles in recent years6Chapter 1 Introduction Why do
5、 we study the Knowledge about the (Metals) Liquid Structure and Solidification Technology ?Almost all of metallic products have undergone Liquid State and Solidification during their producing process.燃燒室18002000葉片(燃燒室)7Chapter 1 Introduction增壓渦輪(精密鑄造)鑄鋼定鑄鋼定內(nèi)部組織鑄鋼的連續(xù)鑄造示意圖8Chapter 1 Introduction銅桿的連續(xù)
6、鑄造示意圖銅(鋁)桿的水平連續(xù)鑄造示意圖銅(鋁)桿的上引連續(xù)鑄造示意圖9Chapter 1 IntroductionCylinder headCylinderPistonConnecting RodCrankshaftValveCamshaft Internal Combustion Engine 10Chapter 1 IntroductionWhat is the Liquid Structure? Three States of Matter: Gaseous State Liquid State Solid State11Chapter 1 Introduction Gas Struc
7、ture氣體分子熱運(yùn)動(dòng)氣體分子熱運(yùn)動(dòng):大距離、短程力,無(wú)規(guī)則熱運(yùn)動(dòng)永不停息。)理想氣體分子模型理想氣體分子模型:質(zhì)點(diǎn)、完全彈性碰撞、分子間作用力不計(jì)。經(jīng)典數(shù)據(jù)經(jīng)典數(shù)據(jù):平均速錄500 m/s;連續(xù)兩次碰撞的平均路程10-7m;平均時(shí)間間隔10-10 s。理想氣體狀態(tài)方程理想氣體狀態(tài)方程:PV=nRT12Chapter 1 Introduction Solid Structure: Crystal, Quasicrystal, Glass (Amorphous)13Chapter 1 Introduction Solid Structure Mechanical Properties: Dens
8、ity, Specific Heat, Thermal Conductivity Tensile Strength, Hardness, Toughness Other properties on atom scale (micro scale)? X-ray diffractionElectron diffraction (TEM)HRTEM14Chapter 1 Introduction Liquid Structure - The models of Liquid Structure Classification of Liquid Fluid Mechanics : Newtonian
9、 fluids & Non-Newtonian fluids Based on the Micro scale:Ionic Liquid: is a Salt in the liquid state.Atomic Liquid: is a Metal or Inert Gas in the liquid state.In General the metal elements is existed as atom in the liquid state.Molecular Liquid: ?Fig. Melton salt and the structure of Ionic Liquid15C
10、hapter 1 Introduction Liquid Structure - The models of Liquid Structure Classification of Liquid 升華與凝聚 I 固 液 氣 II 溶 體 熔 體 III 金屬 熔體 半導(dǎo)體熔體 氧化物 熔體(渣) 熔鹽熔劑 離子熔體 電子熔體 IV V 冶金熔體 Fig.1.5 The classification of liquid原子熔體原子液體MeltLiquid16Chapter 1 Introduction Liquid Structure - The models of Liquid Structur
11、e Models of Liquid Metals-above and near the Liquidus (just above the melting point)Firstly, The physical Model of the liquid metal is given to describe the micro structure of liquid metals. 原子間仍保持較強(qiáng)的結(jié)合能,較小范圍內(nèi)規(guī)則排列There still is higher bond energy between atoms and the atoms is ordered in a small ran
12、ge 呈“近程有序,遠(yuǎn)程無(wú)序”Short Range Order (SRO) 由于能量起伏作用,處于不停游動(dòng)和瞬息萬(wàn)變之中The atoms constantly move since energy fluctuation17Chapter 1 Introduction Liquid Structure - The models of Liquid Structure The Theory Models of Liquid Metals Model of Random Close Packed (RCP) SphereThe RCP state can be studied on the ma
13、croscopic scale by pouring a lot of rigid ball bearings, for example, into a container with irregular surfaces (smooth sides encourage crystallisation) and shaking them together until they can be compressed no further. J. D. Bernal, J. Mason. Nature.1960,v188,p910H. Susskind, W. Becker. Nature. 1966
14、,v212,p156518Chapter 1 Introduction Liquid Structure - The models of Liquid Structure The Theory Models of Liquid Metals Model of Quasi-CrystallineIn which the local coordination just above the melting point is trated as very similar to that which prevails in the solid phase just below. Bernal. A Ge
15、ometrical Approach to the Structure Of Liquids. nature,1959, v183, p141 The crystallographer prefers to approach the Position of a molecular and its neighbours in terms of a model which he can visualize or even build out of balls and spokes, and a whole variety of models have at one time or another
16、been proposed.19Chapter 1 Introduction Liquid Structure - The models of Liquid Structure Crystal Defect Model of Liquid Metals 微晶模型液態(tài)金屬由很多微小晶體和面缺陷組成,在微晶體中金屬原子(或離子)組成完整的晶體點(diǎn)陣,這些微晶體之間以界面相連接。微晶的存在能很好的解釋液態(tài)金屬的短程有序,因而該模型能較好的描述近液相線液態(tài)的微觀結(jié)構(gòu)。 空穴模型金屬晶體熔化時(shí),在晶體網(wǎng)格中形成大量的空位,從而使液態(tài)金屬的微觀結(jié)構(gòu)失去了長(zhǎng)程有序性。大量空位的存在使液態(tài)金屬容易發(fā)生切變,從而
17、具有流動(dòng)性。隨著液態(tài)金屬溫度提高,空位的數(shù)量也不斷增加,表現(xiàn)為液態(tài)金屬粘度的減小。20Chapter 1 Introduction Liquid Structure - The models of Liquid Structure Crystal Defect Model of Liquid Metals 位錯(cuò)模型液態(tài)金屬可以看成是一種被位錯(cuò)芯嚴(yán)重破壞的點(diǎn)陣結(jié)構(gòu)。在特定的溫度以上,在低溫條件下不含位錯(cuò)(或低密度位錯(cuò))的固體點(diǎn)陣結(jié)構(gòu),由于高密度位錯(cuò)的突然出現(xiàn)而變成液體。 綜合模型 該模型認(rèn)為,液態(tài)金屬是由大量不?!坝蝿?dòng)”著的原子團(tuán)簇組成,原子團(tuán)簇內(nèi)為某種有序結(jié)構(gòu),團(tuán)簇周圍是一些散亂無(wú)序的原子。這
18、些原子團(tuán)簇不斷地分化組合,以不安金屬原子(離子)從某個(gè)團(tuán)簇中分化出去,同時(shí)又會(huì)有另一些原子組合到該團(tuán)簇中,此起彼伏,不斷發(fā)生著這樣的漲落過(guò)程,似乎原子團(tuán)簇本身在“游動(dòng)”一樣,團(tuán)簇的尺寸及其內(nèi)部原子數(shù)量都隨溫度變化而變化。 原子團(tuán)簇存活時(shí)間在10-7s量級(jí)。21Chapter 1 Introduction1200 1700 1550 1400 22Chapter 1 Introduction Liquid Structure - The models of Liquid Structure All of the models above describe the structure of the
19、 liquid metals in geometry. For example, the RCP model give some structures to describe the atoms position and their relationship in space. e d c a b 圖 幾種常見(jiàn)的多面體,(a)四面體;(b)八面體;(c) 四方十二面體; (d) 三角棱柱;(e)阿基米德反棱柱; Fig. The Various Polyhedra, (a) Tetrahedron; (b) Octahedron; (c) Quarter Dodecahedron; (d) T
20、riangle Prism; (e) Archimedes Antiprism 23Chapter 1 Introduction Liquid Structure - The models of Liquid Structure Micro Multiphase Structure Modelcio ci ci* A B e T Teu. 二元共晶系合金狀態(tài)平衡圖示意圖 The scheme graph of binary eutectic alloy at equilibrium. QSQFQFccccQSQFQFccccQSmmoiiiinnoiioii22*22* 2221jiiifcf
21、cQF 2221joiioimfcfcQF 2*2*21jiiinfcfcQF fi 和 fj為兩組分的原子散射因子 24Chapter 1 Introduction Liquid Structure - The models of Liquid Structure Micro Multiphase Structure Model 圖 1.9 In-Ga 共晶合金液態(tài)結(jié)構(gòu)因子的計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)的比較* Fig. 1.9 Comparing of structure factors of calculating and results on In-Ga eutectic alloy melt
22、圖 1.8 Bi-Ga 共晶合金液態(tài)結(jié)構(gòu)因子的計(jì)算結(jié)果與實(shí)驗(yàn)的比較* Fig. 1.8 Comparing of structure factors of calculating and experiments on Bi-Ga eutectic alloy melt 25Chapter 1 IntroductionLiquid StructureAtoms Distribution of Liquid Binary AlloysThe Binary Alloy consist of two elements, A and B. Then the Liquid Binary Alloys ca
23、n be divided into several classes according to the bond energy.(A-AA-BB-B), 形成固態(tài)無(wú)固溶度的共晶系;(A-AA-BB-B), 形成固態(tài)無(wú)限互溶的固溶體系;介于前二者之間的是有限固溶共晶體系和包晶系;(A-AA-BB-B),形成在液態(tài)有分層區(qū)的偏晶系;(A-A A-B B-B) ?26Chapter 1 IntroductionFeatures of Liquid Metals“能量起伏能量起伏” 表現(xiàn)為各個(gè)原子間能量的不同和各個(gè)原子團(tuán)簇 間尺寸不同?!敖Y(jié)構(gòu)起伏結(jié)構(gòu)起伏”液體中大量不?!坝蝿?dòng)”著的局域有序原子團(tuán)簇時(shí)聚時(shí)
24、散、此起彼伏,表現(xiàn)為原子團(tuán)簇的尺寸不斷的變化?!皾舛绕鸱鼭舛绕鸱?同種元素及不同元素之間的原子間結(jié)合力存在差別,結(jié)合力較強(qiáng)的原子容易聚集在一起,把別的原于排擠到別處,表現(xiàn)為游動(dòng)原子團(tuán)簇之間存在著成分差異 。27Chapter 1 Introduction Liquid Properties物理性質(zhì):粘度(運(yùn)動(dòng)粘度、動(dòng)力粘度)、密度、導(dǎo)熱系數(shù)、擴(kuò)散系數(shù)、電導(dǎo)率; 物理化學(xué)性質(zhì):等壓熱容、等容熱容、熔化和氣化潛熱、表面張力;熱力學(xué)性質(zhì):蒸汽壓、膨脹和壓縮系數(shù) 粘度、表面張力影響充型過(guò)程; 導(dǎo)熱系數(shù)、熱熔、液態(tài)結(jié)構(gòu)影響凝固過(guò)程28Chapter 1 Introduction Study Metho
25、ds of Liquid MetalsDirect MethodsExperimentSimulationX-ray diffractionNeutron diffractionElectron diffractionEXAFS (extended X-ray absorption fine structure )Monte Carlo (MC) 蒙特卡洛Molecular Dynamics (MD) 分子動(dòng)力學(xué)AB Initio 從頭算First Principle 第一性原理Direct Methods & Indirect Methods29Chapter 1 IntroductionX
26、-ray diffractionX射線光子與原子核束縛得很緊的電子(core electrons)相碰撞而彈射,光子的方向改變了,但能量幾乎沒(méi)有損失,于是產(chǎn)生了波長(zhǎng)不變的散射線。是一種彈性散射。X射線衍射可被用來(lái)分析固體、液體和非晶態(tài)的微觀結(jié)構(gòu)。在分析液態(tài)和非晶態(tài)金屬時(shí),每個(gè)原子的相干散射振幅都可用原子散射因子來(lái)表示。將液態(tài)金屬或非晶態(tài)合金的X-射線衍射強(qiáng)度經(jīng)過(guò)極化(Polarization)、吸收修正(Absorption Correction)和歸一化等處理后,由衍射強(qiáng)度可計(jì)算出結(jié)構(gòu)因子(Structure Factor)。傅立葉變換后,可計(jì)算出徑向分布函數(shù)(Radial Distribu
27、tion Function:RDF)和雙體分布函數(shù)(Pair Distribution Function)。由此可以進(jìn)一步計(jì)算得出原子團(tuán)的相關(guān)尺寸、原子團(tuán)中的原子數(shù)目和配位數(shù)等微觀結(jié)構(gòu)參數(shù)。30Chapter 1 Introduction0.00.51.01.5050100150200250300 14000C13500C13000C12500C12000Cr / nm4 r2og(r)圖 3.27 Cu70Ni30合金在不同溫度下的徑向分布函數(shù)Fig. 3.27 RDFs of Cu70Ni30 alloy at different temperature24681012140.00.51.
28、01.52.02.53.03.54.04.5 14000C13500C13000C12500C12000Cg(r)r/10-1nm圖 3.25 液態(tài) Cu70Ni30合金在不同溫度下的雙體分布函數(shù)Fig. 3.25 The pair distribution functions of liquid Cu70Ni30 alloy at different temperature.31Chapter 1 Introduction Neutron Diffraction原理與X射線衍射相類似,但是:大角度衍射的強(qiáng)度幾乎為常數(shù);極化和吸收修正簡(jiǎn)單;對(duì)同位素和不同元素的散射差別大。 因此,常常與X射線結(jié)
29、合使用,二者相輔相成。 圖 1.15 不同射線的衍射曲線示意圖 Fig.1.15 Schematic diagram of diffraction curves by different radiation 圖 1.16 元素的中子散射幅度Fig. 1.16 Neutron scattering amplitude ofelements.32Chapter 1 Introduction 用中子衍射(A)和 X-射線衍射(B)Ni-42at.%V 非晶合金的整體結(jié)構(gòu)因子 S(Q) ,中子衍射的整體結(jié)構(gòu)因子直接給出了 Ni-Ni 偏結(jié)構(gòu)因子。 Total structure factors S(Q
30、) of Ni-42at.%V amorphous alloy by (A) neutron and (B) x-ray diffraction. S(Q) obtained by neutron diffraction gives directly the partial SNiNi(Q) 33Chapter 1 Introduction Electron Diffraction圖 1.19 非晶合金電子衍射強(qiáng)度Fig. 1.19 Electron-diffraction intensities of theamorphous alloy圖 1.20 非晶合金徑向分布函數(shù)Fig. 1.20
31、RDF profiles of the amorphousalloy 34Chapter 1 Introduction Monte Carlo (MC)-Simulation Methods MC方法是以概率統(tǒng)計(jì)為理論指導(dǎo)的數(shù)值模擬方法。 在微觀結(jié)構(gòu)模擬時(shí),是用隨機(jī)數(shù)來(lái)控制粒子的運(yùn)動(dòng)(位置變化),并使其符合Boltzmann分布的,則在MC方法中粒子瞬時(shí)分布很接近實(shí)際情況,但其粒子運(yùn)動(dòng)的方式卻與實(shí)際情況有差異。因此,用MC方法研究物系平衡性質(zhì)是可靠的,用它研究動(dòng)力學(xué)性質(zhì)就必須謹(jǐn)慎。 MC方法最初是為原子能研究算中子擴(kuò)散過(guò)程而發(fā)展起來(lái)的,所以MC方法用來(lái)計(jì)算動(dòng)力學(xué)問(wèn)題時(shí)要受到一定的限制,不是所有
32、的動(dòng)力學(xué)問(wèn)題它都能計(jì)算。 Alder等計(jì)算了4至500個(gè)硬球系的狀態(tài)方程,特別是相變點(diǎn)附近的情況。同時(shí)他還計(jì)算了密度分別為0.333,0.50, 0.588等的硬球系的g(r) 。 Ree等的MC方法計(jì)算表明:硬球系固體和硬球系流體為(8.27 0.13) 0 KT時(shí), 相變發(fā)生在密度為(0.6670.003)0和(0.7360.003) 0之間, 同時(shí)計(jì)算了熵的變化。35Constant TemperatureF),2, 1()(NirUrHdtdPNiii a初始化配制周期性邊界The nearest neighbor changePredictor-CorrectionVrNKineti
33、c EnergyPotential EnergyThermodynamics parameterMicrostructure初始化速度Constant PressuretaVV0Transport parameterF=maChapter 1 Introduction-MD36Chapter 1 Introduction First Principle & ab Initio 第一性原理(First Principle),是一個(gè)計(jì)算物理或計(jì)算化學(xué)專業(yè)名詞,廣義的第一性原理計(jì)算指的是一切基于量子力學(xué)原理的計(jì)算。量子力學(xué)計(jì)算就是根據(jù)原子核和電子的相互作用原理去計(jì)算分子結(jié)構(gòu)和分子(或離子)能量,然后
34、就能計(jì)算物質(zhì)的各種性質(zhì)。 從頭算(ab initio),是狹義的第一性原理計(jì)算,它是指不使用經(jīng)驗(yàn)參數(shù),只用電子質(zhì)量,光速,質(zhì)子中子質(zhì)量等少數(shù)實(shí)驗(yàn)數(shù)據(jù)去做量子計(jì)算。但是這個(gè)計(jì)算很慢,所以就加入一些經(jīng)驗(yàn)參數(shù),可以很大程度上提高計(jì)算速度,當(dāng)然這樣會(huì)犧牲計(jì)算結(jié)果精度。 37Chapter 1 Introduction Indirect Methods To study the structure of liquid metals by their physical properties, for example, viscosity, tension, density, conductivity, e
35、tc. Viscosity 0.000750.000800.000850.000900.000951.21.31.41.51.6 Data: Data2_lnviscosityModel: Line Equation: y = A + B*x Weighting:yNo weighting Chi2/DoF= 0.00003R2= 0.99092 A0.09803? .06584B1510.06803? 3.45171ln (ln(mPa.s)1/T(K -1)液態(tài)Cu75Sn25的粘度對(duì)數(shù)與溫度倒數(shù)的關(guān)系曲線38Chapter 1 Introduction Indirect Methods
36、Conductivity (or Resistivity )400500600700800900600650700750 Resistivity/(a.u.)Temperature/Temperature/ Resistivity/(a.u.) 純Sb降溫過(guò)程電阻率隨溫度的變化曲線Equilibrium phase diagrame of Zn-Sb binary alloys 39Chapter 1 Introduction Research Articles C. P. Wang,X. J. Liu & et al. Formation of Immiscible Alloy Powder
37、s with Egg-Type Microstructure. Science, 2002: 990-993 圖5.15 Cu80Co20深過(guò)冷凝固組織Fig 5.15 Microstructure of undercooled Cu80Co20 alloys.40Chapter 1 Introduction Research Articles Adam F. Wallace, Lester O. Hedges & et al. Microscopic Evidence for Liquid-Liquid Separation in Supersaturated CaCO3 Solutions
38、. Science 23 August 2013: 885-889. Dongsheng Li, Michael H. Nielsen & et al. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment. Science 25 May 2012: 1014-1018. C. Pfleiderer, P. Bni & et al. Non-Fermi Liquid Metal Without Quantum Criticality. Science, 2007: 1871-1874 Oleg
39、 G. Shpyrko, Reinhard Streitel & et al. Surface Crystallization in a Liquid AuSi Alloy. Science 2006: 77-80 Yves Petroff. The Electronic Structure of Liquid Lead. Science, 2004: 2200-220141Chapter 2 Measurement of Liquid Structure2.1 X-ray diffractometer X-ray Production42Chapter 2 Measurement of Li
40、quid Structure2.1 X-ray diffractometer X-ray Production43Chapter 2 Measurement of Liquid Structure 2.1 X-ray diffractometer Matched filters44Chapter 2 Measurement of Liquid Structure 2.1 X-ray diffractometer Matched filters45Chapter 2 Measurement of Liquid Structure 2.1 X-ray diffractometer X-ray pr
41、operties 波粒二象性 直線傳播折射很小 具有殺傷力損害生物的組織和細(xì)胞 具有光電效應(yīng)感光、熒光 散射現(xiàn)象通過(guò)物質(zhì)后會(huì)改變前進(jìn)方向 吸收現(xiàn)象通過(guò)物質(zhì)后部分會(huì)被吸收The Schematic Diagram of x-ray technology46Chapter 2 Measurement of Liquid Structure 2.1 X-ray diffractometer Diffraction47Chapter 2 Measurement of Liquid Structure 2.1 X-ray diffractometer Brugg Equationndsin2where
42、n is an integer, is the wavelength of incident wave, d is the spacing between the planes of the lattice, and is the angle between the incident ray and the scattering planes. The n is usually set as 1.The Schematic Diagram for Brugg Equation48Chapter 2 Measurement of Liquid Structure 2.1 X-ray diffra
43、ctometer PDF cardsPDF-Powder Diffraction Files單一物質(zhì)49Chapter 2 Measurement of Liquid Structure 2.1 X-ray diffractometer -250Chapter 2 Measurement of Liquid Structure 2.1 X-ray diffractometer X-ray diffractometer for melt ( ) 樣品支架 分子泵 機(jī)械泵 樣品室 坩堝 樣品 樣品液面 X-射線發(fā)生器 計(jì)數(shù)器 單色 X-射線 氦氣 鈹窗 X-射線 水平儀 水平儀觀察位置,亦是激光發(fā)
44、射位置 單色器 熱電偶 攝像頭 監(jiān)視器 分光鏡 改進(jìn)部分 計(jì)算機(jī) 狹縫 均熱罩 X-ray tube激發(fā)X射線靶燈絲51Chapter 2 Measurement of Liquid Structure 2.2 X-ray diffraction Interaction of the X-ray and Materials2.2.1 X-ray Scattera) 相干散射(Coherent Scatter)(彈性散射或湯姆森散射) X射線與原子中束縛較緊的內(nèi)層電子相撞, 光子把全部能量傳給電子, 電子受迫振動(dòng), 不斷被加速或被減速且振動(dòng)頻率與入射X射線的相同。此時(shí)的電子向四周輻射電磁波X射線
45、散射波。此波符合干涉條件,則稱之為相干散射。在X射線和物質(zhì)作用過(guò)程中,都是光子與電子的作用。 特點(diǎn): 散射波波長(zhǎng)與入射波 波長(zhǎng)相等。散射波滿足干涉條件:振動(dòng)方向相同、頻率形同、相位差恒定干涉(interference)條件:振動(dòng)方向相同、頻率形同、相位差恒定衍射(diffraction)現(xiàn)象:光線通過(guò)物質(zhì)產(chǎn)生明暗花樣。52Chapter 2 Measurement of Liquid Structure 2.2 X-ray diffraction Interaction of the X-ray and Materials干涉(interference)條件:振動(dòng)方向相同、頻率形同、相位差恒定
46、衍射(diffraction)現(xiàn)象:光線通過(guò)物質(zhì)產(chǎn)生明暗圖樣。圖53Chapter 2 Measurement of Liquid Structure 2.2 X-ray diffraction Interaction of the X-ray and Materialsb) 非相干散射(Incoherent Scatter)(康普頓-吳有訓(xùn)效應(yīng)或康普頓散射) X射線與原子中束縛力不大的外層電子或價(jià)電子或金屬晶體中的自由電子相撞時(shí),X光子改變了波長(zhǎng)和方向,這種X射線為非相干散射。有時(shí)稱量子散射。圖 非相干散射不能參與晶體對(duì)X射線的衍射,只會(huì)在衍射圖上形成強(qiáng)度隨sin/增加而增加的背底。入射波越
47、短,被照射元素越輕,這種現(xiàn)象越顯著。納米微晶Fe的X射線衍射曲線與理論計(jì)算結(jié)果的比較 54Chapter 2 Measurement of Liquid Structure 2.2 X-ray diffraction Interaction of the X-ray and Materials2.2.2 X射線吸收 (X-ray absorb)為吸收系數(shù):在X射線傳播方向上,單位長(zhǎng)度上的強(qiáng)度衰減值;dx:傳播方向上的距離;I:X射線入射強(qiáng)度;-dI:X射線經(jīng)過(guò)dx距離的衰減值。a) X射線吸收 (X-ray absorb) 與吸收系數(shù)b) 二次特征輻射(熒光X射線) 當(dāng)入射光量子的能量足夠大時(shí)
48、,可以從被照射物質(zhì)的原子內(nèi)部(如K殼層)擊出一個(gè)電子,同時(shí)原子外層高能態(tài)電子要向內(nèi)層的K空位躍遷,輻射出波長(zhǎng)一定的特征X射線。此特征X射線為二次特征X射線或熒光X射線。55Chapter 2 Measurement of Liquid Structure 2.2 X-ray diffraction Intensity of X-ray diffraction2.2.3 影響X射線衍射強(qiáng)度的因素結(jié)構(gòu)因子角因子(包括極化因子和洛倫茲因子)多重因子吸收因子溫度因子56Chapter 2 Measurement of Liquid Structure 2.2 X-ray diffraction Int
49、ensity of X-ray diffraction結(jié)構(gòu)因子(Structure Factor):定量表征原子排布以及原子種類對(duì)衍射強(qiáng)度影響規(guī)律的參數(shù)成為結(jié)構(gòu)因子。即晶體結(jié)構(gòu)對(duì)衍射強(qiáng)度的影響因子。結(jié)構(gòu)因子的理解層次: X射線在一個(gè)電子上的散射,在一個(gè)原子上的散射,在一個(gè)晶胞上的散射一個(gè)電子上的散射(相干散射和非相干散射) 被電子散射的X射線向四面八方輻射,其強(qiáng)度Ie的大小與入射前度I0和散射角度有關(guān)。在距離散射X射線的電子為R處的強(qiáng)度可表示為2)2(cos1)(220RrIIee57Chapter 2 Measurement of Liquid Structure 2.2 X-ray dif
50、fraction Intensity of X-ray diffraction結(jié)構(gòu)因子(Structure Factor):一個(gè)電子上的散射(相干散射和非相干散射)2)2(cos1)(220RrIIeeOPe2IeI0R58Chapter 2 Measurement of Liquid Structure 2.2 X-ray diffraction Intensity of X-ray diffraction其中2)2(cos12為 極化因子 又叫 偏振因子OPe2IeI0R2)2(cos1)(220RrIIee一個(gè)電子上的散射(相干散射和非相干散射)X射線與電子碰撞后,X射線光子的能量全部傳
51、遞給電子,電子受迫振動(dòng),激發(fā)出與入射X射線波長(zhǎng)相同的X射線,滿足干涉條件相干散射;發(fā)生彈性碰撞,被散射的X射線與入射X射線的波長(zhǎng)發(fā)生改變(如圖所示)非相干散射(Incoherent Scattering),也稱作康普頓散射。59Chapter 2 Measurement of Liquid Structure 2.2 X-ray diffraction Intensity of X-ray diffraction一個(gè)原子對(duì)X射線的散射原子散射因子不同電子散射后的X射線具有相位差,合成后的X射線強(qiáng)度為原子散射強(qiáng)度Ia, Ia 2rcInitializeForcesMotionAnalysisSu
52、mmarize每次循環(huán)為一次時(shí)間的演進(jìn):t132Chapter 3 Molecular Dynamic Simulation 3.4 Calculating Forces of the MD Simulation 牛頓方程-力-勢(shì)It is the most important and difficult to calculate the forces in MD simulation. 分子動(dòng)力學(xué)的目的就是要計(jì)算得到系統(tǒng)中每個(gè)粒子的位置、速度和勢(shì)能。粒子的受力情況是影響速度的因素,而勢(shì)的變化與力相關(guān)保守力等于勢(shì)函數(shù)的梯度。iiimFr .UiriF 一個(gè)原子(i原子)牛頓運(yùn)動(dòng)方程 一個(gè)原子所
53、受到的保守力,這個(gè)力是所有因素施加給i原子的。133Chapter 3 Molecular Dynamic Simulation 3.4 Calculating Forces of the MD Simulation 勢(shì) 1212,Niijiij iijkij i kjUUUUr rrrr rr r rU1外力場(chǎng)或邊界條件(如容器壁);U2兩體作用勢(shì),一對(duì)原子之間的作用力,不包含其他原子的影響;U3三體作用勢(shì),描述由于第三個(gè)原子的存在對(duì)原子對(duì)之間作用力的影響。勢(shì)函數(shù)的一般形式UiriF粒子所受力等于其勢(shì)的梯度134Chapter 3 Molecular Dynamic Simulation 3
54、.4 Calculating Forces of the MD Simulation 勢(shì)描述勢(shì)函數(shù)的種類很多,如LJ勢(shì)、鑲嵌原子勢(shì)(EAM) 、Stillinger-Weber(SW)作用勢(shì)、 Tersoff勢(shì)、Morse勢(shì)、硬球勢(shì)、軟球勢(shì)et al。這里以LJ勢(shì)為例講解。Lennard-Jones (LJ)勢(shì)函數(shù)如下:1264L JijijijUrrr勢(shì)阱深度能量參數(shù)平衡常數(shù)長(zhǎng)度參數(shù)斥力項(xiàng)引力項(xiàng)rLJU62ijr對(duì)于液態(tài)氬分子 :120KkB; :0.34 nmkB=1.3810-23J/K135Chapter 3 Molecular Dynamic Simulation 3.4 Calcu
55、lating Forces of the MD Simulation 勢(shì) 勢(shì)的截?cái)喈?dāng)兩個(gè)粒子間距達(dá)到一定距離 ( rc ) 時(shí),其間的相互作用非常微弱,可以忽略不計(jì),超過(guò)此距離勢(shì)和作用力均視為零。2.6cr對(duì)于LJ作用勢(shì),通常取ijcrr0ijF 時(shí)當(dāng)0U2.6rLJU136Chapter 3 Molecular Dynamic Simulation 3.4 Calculating Forces of the MD Simulation 力1264L JijijijUrrr對(duì)勢(shì)函數(shù)求導(dǎo))(ijiiirijrUzyxUijkjifi原子相對(duì)j原子的勢(shì)函數(shù)i原子受j原子的作用力i原子受所有原子的作
56、用力jiiifF對(duì)于多體(粒子數(shù)為N)體系,解析數(shù)學(xué)不能計(jì)算,需要離散數(shù)學(xué)進(jìn)行計(jì)算,常用有限差分方法計(jì)算(Finite Difference Method-FDM)。137Chapter 3 Molecular Dynamic Simulation 3.5 Calculation Process of the MD Simulation 有限差分方法(FDM)圖3-1 空間離散化的情況-節(jié)點(diǎn)物質(zhì)集中在節(jié)點(diǎn)上 差商代替微商所得的方程稱為差分方程,用來(lái)求解微分(或偏微分)方程的確定問(wèn)題。對(duì)時(shí)間的一階差商代替偏微分: xytTcQyTxT)(2222如求解二維熱傳導(dǎo)的偏微分方程,偏微分方程為:ttT
57、ttTyxyx)()(),(),(ttTttTyxtyx)(lim)(),(0),(在 tt+t 之間,(x,y)處的溫度沒(méi)有變化。138Chapter 3 Molecular Dynamic Simulation 3.5 Calculation Process of the MD Simulation 有限差分方法(FDM)差商:T xxT xx()( )T xT xxx( )()T xxT xxx()()2向前差商(一階):向后差商(一階):中心差商(一階): 微商 T(x) x+x x x-x o 向后 中心 向前 T x 二階差商(向前):xxxTxxTxxxTxxT)()(-)()2
58、(139Chapter 3 Molecular Dynamic Simulation 3.5 Calculation Process of the MD Simulation 有限差分方法(FDM) 以一維熱傳導(dǎo)情況為例,空間上用二階中心差商代替二階微商,時(shí)間上用向后一階差商代替一階微商:tTcxT22 t=Pt; (P=0,1,2,m)T(t)=T(Pt ); T(t+ t )=T(P+1) t )x=ix;222)()()(2)()()()()()(xxxTxTxxTxxxxTxTxxTxxTxxTttttttttTtCxTCxtTTiPiPiPiP121212()()一維熱傳導(dǎo)的差分格式
59、(方程)ttTttTttTxxx)()()( Q x 1 i-1 i i+1 n Tp1 Tpi-1 Tpi Tpi+1 Tpn 圖 一維物體離散化后的情況 一維熱傳導(dǎo)偏微分方程140Chapter 3 Molecular Dynamic Simulation 3.5 Calculation Process of the MD Simulation 有限差分法Verlet算法泰勒展開(kāi)式:同理有:3-33-13-2444333224)(! 3)( 2!)()( )(dtdtdtdtdtdtdtdttttiii2iiirrrrrr!3-4 nnndxfdnxdxfdxdxdfxxfxxf!)(!
60、2)()()(222則粒子空間位置(矢量)與時(shí)間的函數(shù) ri(t) 泰勒展開(kāi)式為:)(24)()(6)()( 2)()()( )(432tcttbttatttvtttiiiiiirr)(24)()(6)()( 2)()()( )(432tcttbttatttvtttiiiiiirr141Chapter 3 Molecular Dynamic Simulation 3.5 Calculation Process of the MD Simulation 有限差分法Verlet算法式(3-3)+(3-4)得:3-5)(12)()()()()(2 )(42tcttattttttiiiiirrr令:)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年P(guān)2P網(wǎng)絡(luò)貸款合同電子簽章技術(shù)規(guī)范范本3篇
- 2025版出租車充電樁建設(shè)與維護(hù)服務(wù)合同3篇
- 專業(yè)化弱電維修保障服務(wù)協(xié)議(2024年版)版B版
- 2024版買賣意向協(xié)議書范本
- 2024年鋼結(jié)構(gòu)裝修合同樣本
- 2024版專業(yè)餐飲管理承包協(xié)議樣本版
- 2024庚辛雙方關(guān)于基礎(chǔ)設(shè)施建設(shè)施工合同
- 2024新能源研發(fā)團(tuán)隊(duì)人員股權(quán)激勵(lì)合同
- 2024年甲乙雙方關(guān)于城市燃?xì)夤艿烙盟芰瞎懿墓?yīng)合同
- 2024青島購(gòu)房合同范文
- 八年級(jí)下冊(cè)英語(yǔ)單詞默寫打印版
- (正式版)JBT 14581-2024 閥門用彈簧蓄能密封圈
- 速凍手抓餅標(biāo)準(zhǔn)
- 2024年高考語(yǔ)文備考之語(yǔ)用新題“語(yǔ)境+語(yǔ)義”專練
- 培訓(xùn)課件核電質(zhì)保要求
- 2021湖南省生活污水處理一體化設(shè)備技術(shù)指南
- 鐵路防洪安全教育培訓(xùn)
- 實(shí)習(xí)生安全教育培訓(xùn)課件
- 家長(zhǎng)的陪伴孩子的寒假守護(hù)
- 蒸汽梯級(jí)利用能評(píng)報(bào)告
- 建筑勞務(wù)合作協(xié)議書范本.文檔
評(píng)論
0/150
提交評(píng)論