版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、7.2圓錐曲線一、知識(shí)導(dǎo)學(xué)1橢圓定義:在平面內(nèi),到兩定點(diǎn)距離之和等于定長(zhǎng)(定長(zhǎng)大于兩定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡2橢圓的標(biāo)準(zhǔn)方程:, ()3橢圓的第二定義:一動(dòng)點(diǎn)到定點(diǎn)的距離和它到一條定直線的距離的比是一個(gè)內(nèi)常數(shù),那么這個(gè)點(diǎn)的軌跡叫做橢圓 其中定點(diǎn)叫做焦點(diǎn),定直線叫做準(zhǔn)線,常數(shù)就是離心率橢圓的第二定義與第一定義是等價(jià)的,它是橢圓兩種不同的定義方式4橢圓的準(zhǔn)線方程對(duì)于,左準(zhǔn)線;右準(zhǔn)線對(duì)于,下準(zhǔn)線;上準(zhǔn)線5.焦點(diǎn)到準(zhǔn)線的距離(焦參數(shù))橢圓的準(zhǔn)線方程有兩條,這兩條準(zhǔn)線在橢圓外部,與短軸平行,且關(guān)于短軸對(duì)稱 6橢圓的參數(shù)方程7雙曲線的定義:平面內(nèi)到兩定點(diǎn)的距離的差的絕對(duì)值為常數(shù)(小于)的動(dòng)點(diǎn)的軌跡叫雙曲
2、線 即 這兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),兩焦點(diǎn)間的距離叫做焦距8雙曲線的標(biāo)準(zhǔn)方程及特點(diǎn): (1)雙曲線的標(biāo)準(zhǔn)方程有焦點(diǎn)在x軸上和焦點(diǎn)y軸上兩種: 焦點(diǎn)在軸上時(shí)雙曲線的標(biāo)準(zhǔn)方程為:(,); 焦點(diǎn)在軸上時(shí)雙曲線的標(biāo)準(zhǔn)方程為:(,)(2)有關(guān)系式成立,且其中與b的大小關(guān)系:可以為9焦點(diǎn)的位置:從橢圓的標(biāo)準(zhǔn)方程不難看出橢圓的焦點(diǎn)位置可由方程中含字母、項(xiàng)的分母的大小來確定,分母大的項(xiàng)對(duì)應(yīng)的字母所在的軸就是焦點(diǎn)所在的軸 而雙曲線是根據(jù)項(xiàng)的正負(fù)來判斷焦點(diǎn)所在的位置,即項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在軸上;項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在軸上10雙曲線的幾何性質(zhì):(1)范圍、對(duì)稱性 由標(biāo)準(zhǔn)方程,從橫的方向來看,直線x=-,x
3、=之間沒有圖象,從縱的方向來看,隨著x的增大,y的絕對(duì)值也無限增大,所以曲線在縱方向上可無限伸展,不像橢圓那樣是封閉曲線 雙曲線不封閉,但仍稱其對(duì)稱中心為雙曲線的中心 (2)頂點(diǎn)頂點(diǎn):,特殊點(diǎn):實(shí)軸:長(zhǎng)為2, 叫做半實(shí)軸長(zhǎng) 虛軸:長(zhǎng)為2b,b叫做虛半軸長(zhǎng)雙曲線只有兩個(gè)頂點(diǎn),而橢圓則有四個(gè)頂點(diǎn),這是兩者的又一差異(3)漸近線過雙曲線的漸近線() (4)離心率雙曲線的焦距與實(shí)軸長(zhǎng)的比,叫做雙曲線的離心率 范圍:雙曲線形狀與e的關(guān)系:,e越大,即漸近線的斜率的絕對(duì)值就大,這時(shí)雙曲線的形狀就從扁狹逐漸變得開闊 由此可知,雙曲線的離心率越大,它的開口就越闊 11 雙曲線的第二定義:到定點(diǎn)F的距離與到定直
4、線的距離之比為常數(shù)的點(diǎn)的軌跡是雙曲線 其中,定點(diǎn)叫做雙曲線的焦點(diǎn),定直線叫做雙曲線的準(zhǔn)線 常數(shù)e是雙曲線的離心率12雙曲線的準(zhǔn)線方程:對(duì)于來說,相對(duì)于左焦點(diǎn)對(duì)應(yīng)著左準(zhǔn)線,相對(duì)于右焦點(diǎn)對(duì)應(yīng)著右準(zhǔn)線;焦點(diǎn)到準(zhǔn)線的距離(也叫焦參數(shù)) 對(duì)于來說,相對(duì)于上焦點(diǎn)對(duì)應(yīng)著上準(zhǔn)線;相對(duì)于下焦點(diǎn)對(duì)應(yīng)著下準(zhǔn)線拋物線圖形方程焦點(diǎn)準(zhǔn)線13 拋物線定義:平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線的距離相等的點(diǎn)的軌跡叫做拋物線 定點(diǎn)F叫做拋物線的焦點(diǎn),定直線叫做拋物線的準(zhǔn)線 二、疑難知識(shí)導(dǎo)析橢圓、雙曲線、拋物線同屬于圓錐曲線,它們的定義、標(biāo)準(zhǔn)方程及其推導(dǎo)過程以及簡(jiǎn)單的幾何性質(zhì)都存在著相似之處,也有著一定的區(qū)別,因此,要準(zhǔn)確地理解和掌握
5、三種曲線的特點(diǎn)以及它們之間的區(qū)別與聯(lián)系1等軸雙曲線定義:實(shí)軸和虛軸等長(zhǎng)的雙曲線叫做等軸雙曲線,這樣的雙曲線叫做等軸雙曲線 等軸雙曲線的性質(zhì):(1)漸近線方程為:;(2)漸近線互相垂直;(3)離心率 2共漸近線的雙曲線系如果已知一雙曲線的漸近線方程為,那么此雙曲線方程就一定是:或?qū)懗?3共軛雙曲線以已知雙曲線的實(shí)軸為虛軸,虛軸為實(shí)軸,這樣得到的雙曲線稱為原雙曲線的共軛雙曲線 雙曲線和它的共軛雙曲線的焦點(diǎn)在同一圓上 確定雙曲線的共軛雙曲線的方法:將1變?yōu)?14拋物線的幾何性質(zhì)(1)范圍因?yàn)閜0,由方程可知,這條拋物線上的點(diǎn)M的坐標(biāo)(x,y)滿足不等式x0,所以這條拋物線在y軸的右側(cè);當(dāng)x的值增大時(shí)
6、,|y|也增大,這說明拋物線向右上方和右下方無限延伸(2)對(duì)稱性以y代y,方程不變,所以這條拋物線關(guān)于x軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸(3)頂點(diǎn)拋物線和它的軸的交點(diǎn)叫做拋物線的頂點(diǎn)在方程中,當(dāng)y=0時(shí),x=0,因此拋物線的頂點(diǎn)就是坐標(biāo)原點(diǎn)(4)離心率拋物線上的點(diǎn)M與焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率,用e表示由拋物線的定義可知,e=119拋物線的焦半徑公式:拋物線,拋物線, 拋物線, 拋物線,三、經(jīng)典例題導(dǎo)講例1設(shè)雙曲線的漸近線為:,求其離心率.錯(cuò)解:由雙曲線的漸近線為:,可得:,從而剖析:由雙曲線的漸近線為是不能確定焦點(diǎn)的位置在x軸上的,當(dāng)焦點(diǎn)的位置在y軸上時(shí),故
7、本題應(yīng)有兩解,即:或.例2設(shè)點(diǎn)P(x,y)在橢圓上,求的最大、最小值.錯(cuò)解:因 ,得:,同理得:,故 最大、最小值分別為3,-3.剖析:本題中x、y除了分別滿足以上條件外,還受制約條件的約束.當(dāng)x=1時(shí),y此時(shí)取不到最大值2,故x+y的最大值不為3.其實(shí)本題只需令,則,故其最大值為,最小值為.例3已知雙曲線的右準(zhǔn)線為,右焦點(diǎn),離心率,求雙曲線方程.錯(cuò)解一: 故所求的雙曲線方程為錯(cuò)解二: 由焦點(diǎn)知故所求的雙曲線方程為錯(cuò)因:這兩個(gè)解法都是誤認(rèn)為雙曲線的中心在原點(diǎn),而題中并沒有告訴中心在原點(diǎn)這個(gè)條件。由于判斷錯(cuò)誤,而造成解法錯(cuò)誤。隨意增加、遺漏題設(shè)條件,都會(huì)產(chǎn)生錯(cuò)誤解法.解法一: 設(shè)為雙曲線上任意一
8、點(diǎn),因?yàn)殡p曲線的右準(zhǔn)線為,右焦點(diǎn),離心率,由雙曲線的定義知 整理得 解法二: 依題意,設(shè)雙曲線的中心為,則 解得 ,所以 故所求雙曲線方程為 例4設(shè)橢圓的中心是坐標(biāo)原點(diǎn),長(zhǎng)軸在軸上,離心率,已知點(diǎn)到這個(gè)橢圓上的最遠(yuǎn)距離是,求這個(gè)橢圓的方程.錯(cuò)解:依題意可設(shè)橢圓方程為則 ,所以 ,即 設(shè)橢圓上的點(diǎn)到點(diǎn)的距離為,則 所以當(dāng)時(shí),有最大值,從而也有最大值。所以 ,由此解得:于是所求橢圓的方程為錯(cuò)因:盡管上面解法的最后結(jié)果是正確的,但這種解法卻是錯(cuò)誤的。結(jié)果正確只是碰巧而已。由當(dāng)時(shí),有最大值,這步推理是錯(cuò)誤的,沒有考慮到的取值范圍.事實(shí)上,由于點(diǎn)在橢圓上,所以有,因此在求的最大值時(shí),應(yīng)分類討論.正解:若
9、,則當(dāng)時(shí),(從而)有最大值.于是從而解得.所以必有,此時(shí)當(dāng)時(shí),(從而)有最大值,所以,解得于是所求橢圓的方程為例5從橢圓,(b0)上一點(diǎn)M向x軸所作垂線恰好通過橢圓的左焦點(diǎn)F1,A、B分別是橢圓長(zhǎng)、短軸的端點(diǎn),ABOM設(shè)Q是橢圓上任意一點(diǎn),當(dāng)QF2AB時(shí),延長(zhǎng)QF2與橢圓交于另一點(diǎn)P,若F1PQ的面積為20,求此時(shí)橢圓的方程解:本題可用待定系數(shù)法求解b=c, =c,可設(shè)橢圓方程為PQAB,kPQ=-,則PQ的方程為y=(x-c),代入橢圓方程整理得5x2-8cx+2c2=0,根據(jù)弦長(zhǎng)公式,得,又點(diǎn)F1到PQ的距離d=c ,由故所求橢圓方程為例6已知橢圓:,過左焦點(diǎn)F作傾斜角為的直線交橢圓于A、
10、B兩點(diǎn),求弦AB的長(zhǎng)解:a=3,b=1,c=2; 則F(-2,0)由題意知:與聯(lián)立消去y得:設(shè)A(、B(,則是上面方程的二實(shí)根,由違達(dá)定理,又因?yàn)锳、B、F都是直線上的點(diǎn),所以|AB|=點(diǎn)評(píng):也可利用“焦半徑”公式計(jì)算例7(06年全國(guó)理科)設(shè)P是橢圓短軸的一個(gè)端點(diǎn),Q為橢圓上的一個(gè)動(dòng)點(diǎn),求PQ的最大值.解: 依題意可設(shè)P(0,1),Q(),則PQ,又因?yàn)镼在橢圓上,所以,PQ2.因?yàn)?,1,若,則1,當(dāng)時(shí),PQ取最大值;若1,則當(dāng)時(shí),PQ取最大值2.例8已知雙曲線的中心在原點(diǎn),過右焦點(diǎn)F(2,0)作斜率為的直線,交雙曲線于M、N 兩點(diǎn),且=4,求雙曲線方程解:設(shè)所求雙曲線方程為,由右焦點(diǎn)為(2
11、,0)知C=2,b2=4-2則雙曲線方程為,設(shè)直線MN的方程為:,代入雙曲線方程整理得:(20-82)x2+122x+54-322=0 設(shè)M(x1,y1),N(x2,y2),則, 解得,故所求雙曲線方程為:點(diǎn)評(píng):利用待定系數(shù)法求曲線方程,運(yùn)用一元二次方程的根與系數(shù)關(guān)系將兩根之和與積整體代入,體現(xiàn)了數(shù)學(xué)的整體思想,也簡(jiǎn)化了計(jì)算,要求學(xué)生熟練掌握錯(cuò)解剖析得真知(二十二) 7.3 點(diǎn)、直線和圓錐曲線一、知識(shí)導(dǎo)學(xué)1 點(diǎn)M(x0,y0)與圓錐曲線C:f(x,y)=0的位置關(guān)系已知(ab0)的焦點(diǎn)為F1、F2, (a0,b0)的焦點(diǎn)為F1、F2,(p0)的焦點(diǎn)為F,一定點(diǎn)為P(x0,y0),M點(diǎn)到拋物線的
12、準(zhǔn)線的距離為d,則有:上述結(jié)論可以利用定比分點(diǎn)公式,建立兩點(diǎn)間的關(guān)系進(jìn)行證明2直線AxBC=0與圓錐曲線Cf(x,y)0的位置關(guān)系:直線與圓錐曲線的位置關(guān)系可分為:相交、相切、相離對(duì)于拋物線來說,平行于對(duì)稱軸的直線與拋物線相交于一點(diǎn),但并不是相切;對(duì)于雙曲線來說,平行于漸近線的直線與雙曲線只有一個(gè)交點(diǎn),但并不相切這三種位置關(guān)系的判定條件可引導(dǎo)學(xué)生歸納為:設(shè)直線:Ax+By+C=0,圓錐曲線C:f(x,y)=0,由消去y(或消去x)得:ax2+bx+c=0,=b2-4ac,(若a0時(shí)),0相交 0相離 = 0相切注意:直線與拋物線、雙曲線有一個(gè)公共點(diǎn)是直線與拋物線、雙曲線相切的必要條件,但不是充
13、分條件二、疑難知識(shí)導(dǎo)析1橢圓的焦半徑公式:(左焦半徑),(右焦半徑),其中是離心率。 焦點(diǎn)在y軸上的橢圓的焦半徑公式: (其中分別是橢圓的下上焦點(diǎn)).焦半徑公式的兩種形式的區(qū)別只和焦點(diǎn)的左右有關(guān),而與點(diǎn)在左在右無關(guān) 可以記為:左加右減,上減下加.2雙曲線的焦半徑定義:雙曲線上任意一點(diǎn)M與雙曲線焦點(diǎn)的連線段,叫做雙曲線的焦半徑.焦點(diǎn)在x軸上的雙曲線的焦半徑公式:焦點(diǎn)在y軸上的雙曲線的焦半徑公式: ( 其中分別是雙曲線的下上焦點(diǎn))3雙曲線的焦點(diǎn)弦:定義:過焦點(diǎn)的直線割雙曲線所成的相交弦。焦點(diǎn)弦公式: 當(dāng)雙曲線焦點(diǎn)在x軸上時(shí),過左焦點(diǎn)與左支交于兩點(diǎn)時(shí): ;過右焦點(diǎn)與右支交于兩點(diǎn)時(shí):。當(dāng)雙曲線焦點(diǎn)在y
14、軸上時(shí),過左焦點(diǎn)與左支交于兩點(diǎn)時(shí):;過右焦點(diǎn)與右支交于兩點(diǎn)時(shí):。4雙曲線的通徑:定義:過焦點(diǎn)且垂直于對(duì)稱軸的相交弦 .5直線和拋物線(1)位置關(guān)系:相交(兩個(gè)公共點(diǎn)或一個(gè)公共點(diǎn));相離(無公共點(diǎn));相切(一個(gè)公共點(diǎn)).聯(lián)立,得關(guān)于x的方程當(dāng)(二次項(xiàng)系數(shù)為零),唯一一個(gè)公共點(diǎn)(交點(diǎn));當(dāng),則若,兩個(gè)公共點(diǎn)(交點(diǎn));,一個(gè)公共點(diǎn)(切點(diǎn));,無公共點(diǎn) (相離).(2)相交弦長(zhǎng):弦長(zhǎng)公式:.(3)焦點(diǎn)弦公式: 拋物線, .拋物線, .拋物線, .拋物線,.(4)通徑:定義:過焦點(diǎn)且垂直于對(duì)稱軸的相交弦 通徑:.(5)常用結(jié)論:和和.三、經(jīng)典例題導(dǎo)講例1求過點(diǎn)的直線,使它與拋物線僅有一個(gè)交點(diǎn).錯(cuò)解: 設(shè)
15、所求的過點(diǎn)的直線為,則它與拋物線的交點(diǎn)為,消去得整理得 直線與拋物線僅有一個(gè)交點(diǎn),解得所求直線為正解: 當(dāng)所求直線斜率不存在時(shí),即直線垂直軸,因?yàn)檫^點(diǎn),所以即軸,它正好與拋物線相切.當(dāng)所求直線斜率為零時(shí),直線為y = 1平行軸,它正好與拋物線只有一個(gè)交點(diǎn).一般地,設(shè)所求的過點(diǎn)的直線為,則,令解得k = , 所求直線為綜上,滿足條件的直線為:例2已知曲線C:與直線L:僅有一個(gè)公共點(diǎn),求m的范圍.錯(cuò)解:曲線C:可化為,聯(lián)立,得:,由0,得.錯(cuò)因:方程與原方程并不等價(jià),應(yīng)加上.正解:原方程的對(duì)應(yīng)曲線應(yīng)為橢圓的上半部分.(如圖),結(jié)合圖形易求得m的范圍為.注意:在將方程變形時(shí)應(yīng)時(shí)時(shí)注意范圍的變化,這樣
16、才不會(huì)出錯(cuò).例3已知雙曲線,過P(1,1)能否作一條直線L與雙曲線交于A、B兩點(diǎn),且P為AB中點(diǎn).錯(cuò)解:(1)過點(diǎn)P且與x軸垂直的直線顯然不符合要求.(2)設(shè)過P的直線方程為,代入并整理得:,又 解之得:k=2,故直線方程為:y=2x-1,即直線是存在的.正解:接以上過程,考慮隱含條件“0”,當(dāng)k=2時(shí)代入方程可知0,故這樣的直線不存在.例4已知A、B是圓與x軸的兩個(gè)交點(diǎn),CD是垂直于AB的動(dòng)弦,直線AC和DB相交于點(diǎn)P,問是否存在兩個(gè)定點(diǎn)E、F, 使 | | PE | PF | | 為定值?若存在,求出E、F的坐標(biāo);若不存在,請(qǐng)說明理由. 解:由已知得 A (1, 0 )、B ( 1, 0
17、), 設(shè) P ( x, y ), C ( ) , 則 D (), 由A、C、P三點(diǎn)共線得 由D、B、P三點(diǎn)共線得 得 又 , , 代入得 ,即點(diǎn)P在雙曲線上, 故由雙曲線定義知,存在兩個(gè)定點(diǎn)E (, 0 )、F (, 0 )(即此雙曲線的焦點(diǎn)),使 | | PE | PF | | = 2 (即此雙曲線的實(shí)軸長(zhǎng)為定值).例5已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,直線y=x+1 與該橢圓相交于P和Q,且OPOQ,PQ=,求橢圓的方程.解:設(shè)所求橢圓的方程為=1. 依題意知,點(diǎn)P、Q的坐標(biāo)滿足方程組: 將代入,整理得 , 設(shè)方程的兩個(gè)根分別為、,則直線y=x+1和橢圓的交點(diǎn)為P(,+1),Q(
18、,+1)由題設(shè)OPOQ,OP=,可得 整理得 解這個(gè)方程組,得 或 根據(jù)根與系數(shù)的關(guān)系,由式得 (1) 或 (2) 解方程組(1)、(2)得 或故所求橢圓方程為=1 , 或 =1.例6(06年高考湖南)已知橢圓C1:1,拋物線C2:,且C1、C2的公共弦AB過橢圓C1的右焦點(diǎn)。(1)當(dāng)AB軸時(shí),求、的值,并判斷拋物線C2的焦點(diǎn)是否在直線AB上;(2)若,且拋物線C2的焦點(diǎn)在直線AB上,求的值及直線AB的方程.解:(1)當(dāng)AB軸時(shí),點(diǎn)A、B關(guān)于軸對(duì)稱,所以0,直線AB的方程為1,從而點(diǎn)A的坐標(biāo)為(1,)或(1,),因?yàn)辄c(diǎn)A在拋物線上,所以,.此時(shí),拋物線C2的焦點(diǎn)坐標(biāo)為(,0),該焦點(diǎn)不在直線A
19、B上.(1) 當(dāng)拋物線C2的焦點(diǎn)在直線AB上時(shí),由(1)知直線AB的斜率存在,設(shè)直線AB的方程為.(2) 由消去得設(shè)A、B的坐標(biāo)分別為()、().則,是方程的兩根,.因?yàn)锳B既是過C1的右焦點(diǎn)的弦,又是C2的焦點(diǎn)的弦,所以AB(2)(2)4,且AB()().從而4所以,即解得.因?yàn)镃2的焦點(diǎn)F、()在直線上,所以,即當(dāng)時(shí)直線AB的方程為;當(dāng)時(shí)直線AB的方程為.四、典型習(xí)題導(dǎo)練1頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線l:y=2x+1截得的弦長(zhǎng)為,則拋物線方程為 2.直線m:y=kx+1和雙曲線x2y2=1的左支交于A、B兩點(diǎn),直線l過點(diǎn)P(2,0)和線段AB的中點(diǎn),則直線l在y軸上的截距b的取值
20、范圍為 3試求m的取值范圍.4 設(shè)過原點(diǎn)的直線l與拋物線y2=4(x1)交于A、B兩點(diǎn),且以AB為直徑的圓恰好過拋物線的焦點(diǎn)F, (1)求直線l的方程; (2)求|AB|的長(zhǎng).5 如圖,過拋物線y2=4x的頂點(diǎn)O作任意兩條互相垂直的弦OM、ON,求(1)MN與x軸交點(diǎn)的坐標(biāo);(2)求MN中點(diǎn)的軌跡方程.9設(shè)曲線C的方程是yx3-x,將C沿x軸、y軸正向分別平行移動(dòng)t,s單 位長(zhǎng)度后得曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關(guān)于點(diǎn)A()對(duì)稱;(3)如果曲線C與C1有且僅有一個(gè)公共點(diǎn),證明s且t0.錯(cuò)解剖析得真知(二十三) 7.4軌跡問題一、知識(shí)導(dǎo)學(xué)1.方程的曲線在平面直角坐標(biāo)系
21、中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡 )上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).那么這個(gè)方程叫做曲線的方程;這條曲線叫做方程的曲線.2.點(diǎn)與曲線的關(guān)系 若曲線C的方程是f(x,y)=0,則點(diǎn)P0(x0,y0)在曲線C上f(x0,y0)=0;點(diǎn)P0(x0,y0)不在曲線C上f(x0,y0)0兩條曲線的交點(diǎn) 若曲線C1,C2的方程分別為f1(x,y)=0,f2(x,y)=0,則點(diǎn)P0(x0,y0)是C1,C2的交點(diǎn)方程組有n個(gè)不同的實(shí)數(shù)解,兩條曲線就有n個(gè)不同的交點(diǎn);方程組沒有
22、實(shí)數(shù)解,曲線就沒有交點(diǎn).3.圓錐曲線的統(tǒng)一定義平面內(nèi)的動(dòng)點(diǎn)P(x,y)到一個(gè)定點(diǎn)F(c,0)的距離與到不通過這個(gè)定點(diǎn)的一條定直線l的距離之比是一個(gè)常數(shù)e(e0),則動(dòng)點(diǎn)的軌跡叫做圓錐曲線.其中定點(diǎn)F(c,0)稱為焦點(diǎn),定直線l稱為準(zhǔn)線,正常數(shù)e稱為離心率.當(dāng)0e1時(shí),軌跡為橢圓當(dāng)e=1時(shí),軌跡為拋物線當(dāng)e1時(shí),軌跡為雙曲線4.坐標(biāo)變換(1)坐標(biāo)變換 在解析幾何中,把坐標(biāo)系的變換(如改變坐標(biāo)系原點(diǎn)的位置或坐標(biāo)軸的方向)叫做坐標(biāo)變換.實(shí)施坐標(biāo)變換時(shí),點(diǎn)的位置,曲線的形狀、大小、位置都不改變,僅僅只改變點(diǎn)的坐標(biāo)與曲線的方程.坐標(biāo)軸的平移:坐標(biāo)軸的方向和長(zhǎng)度單位不改變,只改變?cè)c(diǎn)的位置,這種坐標(biāo)系的變
23、換叫做坐標(biāo)軸的平移,簡(jiǎn)稱移軸.(2)坐標(biāo)軸的平移公式 設(shè)平面內(nèi)任意一點(diǎn)M,它在原坐標(biāo)系xOy中的坐標(biāo)是(x,y),在新坐標(biāo)系x Oy中的坐標(biāo)是(x,y).設(shè)新坐標(biāo)系的原點(diǎn)O在原坐標(biāo)系xOy中的坐標(biāo)是(h,k),則(1) 或 (2)公式(1)或(2)叫做平移(或移軸)公式.二、疑難知識(shí)導(dǎo)析1.在求曲線軌跡方程的過程中,要注意:(1)理解題意,弄清題目中的已知和結(jié)論,發(fā)現(xiàn)已知和未知的關(guān)系,進(jìn)行知識(shí)的重新組合;(2)合理進(jìn)行數(shù)學(xué)語言間的轉(zhuǎn)換,數(shù)學(xué)語言包括文字語言、符號(hào)語言和圖形語言,通過審題畫出必要的圖形或示意圖,把不宜于直接計(jì)算的關(guān)系化為能直接進(jìn)行數(shù)學(xué)處理的關(guān)系式,把不便于進(jìn)行數(shù)學(xué)處理的語言化為便
24、于數(shù)學(xué)處理的語言;(3)注意挖掘題目中的隱含條件;(4)注意反饋和檢驗(yàn).2.求軌跡方程的基本方法有:(1)直接法:若動(dòng)點(diǎn)滿足的幾何條件是一些幾何量的等量關(guān)系,則將這些關(guān)系“翻譯”成x,y的關(guān)系式,由此得到軌跡方程.一般步驟是:建立坐標(biāo)系設(shè)點(diǎn)列式代換化簡(jiǎn)、整理.(2)定義法:即當(dāng)動(dòng)點(diǎn)的軌跡滿足的條件符合某種特殊曲線的定義時(shí),則可根據(jù)這種曲線的定義建立方程.(3)待定系數(shù)法:已知?jiǎng)狱c(diǎn)的軌跡是某種圓錐曲線,則可先設(shè)出含有待定系數(shù)的方程,再根據(jù)動(dòng)點(diǎn)滿足的條件確定待定系數(shù).(4)相關(guān)點(diǎn)法:當(dāng)動(dòng)點(diǎn)P(x,y)隨著另一動(dòng)點(diǎn)Q(x1,y1)的運(yùn)動(dòng)而運(yùn)動(dòng)時(shí),而動(dòng)點(diǎn)Q在某已知曲線上,且Q點(diǎn)的坐標(biāo)可用P點(diǎn)的坐標(biāo)來表
25、示,則可代入動(dòng)點(diǎn)Q的方程中,求得動(dòng)點(diǎn)P的軌跡方程.(5)參數(shù)法:當(dāng)動(dòng)點(diǎn)P的坐標(biāo)x、y之間的直接關(guān)系不易建立時(shí),可適當(dāng)?shù)剡x取中間變量t,并用t表示動(dòng)點(diǎn)的坐標(biāo)x、y,從而得到動(dòng)點(diǎn)軌跡的參數(shù)方程 ,消去t,便可得動(dòng)點(diǎn)P的普通方程.另外,還有交軌法、幾何法等.3.在求軌跡問題時(shí)常用的數(shù)學(xué)思想是:(1)函數(shù)與方程的思想:求平面曲線的軌跡方程,是將幾何條件(性質(zhì))表示為動(dòng)點(diǎn)坐標(biāo)x、y的方程及函數(shù)關(guān)系;(2)數(shù)形結(jié)合的思想:由曲線的幾何性質(zhì)求曲線方程是“數(shù)”與“形”的有機(jī)結(jié)合;(3)等價(jià)轉(zhuǎn)化的思想:通過坐標(biāo)系使“數(shù)”與“形”相互結(jié)合,在解決問題時(shí)又需要相互轉(zhuǎn)化.三、經(jīng)典例題導(dǎo)講例1如圖所示,已知P(4,0)
26、是圓x2+y2=36內(nèi)的一點(diǎn),A、B是圓上兩動(dòng)點(diǎn),且滿足APB=90,求矩形APBQ的頂點(diǎn)Q的軌跡方程.解:設(shè)AB的中點(diǎn)為R,坐標(biāo)為(x,y),則在RtABP中,|AR|=|PR|.又因?yàn)镽是弦AB的中點(diǎn),依垂徑定理:在RtOAR中,|AR|2=|AO|2|OR|2=36(x2+y2)又|AR|=|PR|=所以有(x4)2+y2=36(x2+y2),即x2+y24x10=0因此點(diǎn)R在一個(gè)圓上,而當(dāng)R在此圓上運(yùn)動(dòng)時(shí),Q點(diǎn)即在所求的軌跡上運(yùn)動(dòng).設(shè)Q(x,y),R(x1,y1),因?yàn)镽是PQ的中點(diǎn),所以x1=,代入方程x2+y24x10=0,得10=0整理得 x2+y2=56,這就是所求的軌跡方程.
27、 技巧與方法:對(duì)某些較復(fù)雜的探求軌跡方程的問題,可先確定一個(gè)較易于求得的點(diǎn)的軌跡方程,再以此點(diǎn)作為主動(dòng)點(diǎn),所求的軌跡上的點(diǎn)為相關(guān)點(diǎn),求得軌跡方程.例2某檢驗(yàn)員通常用一個(gè)直徑為2 cm和一個(gè)直徑為1 cm的標(biāo)準(zhǔn)圓柱,檢測(cè)一個(gè)直徑為3 cm的圓柱,為保證質(zhì)量,有人建議再插入兩個(gè)合適的同號(hào)標(biāo)準(zhǔn)圓柱,問這兩個(gè)標(biāo)準(zhǔn)圓柱的直徑為多少?解:設(shè)直徑為3,2,1的三圓圓心分別為O、A、B,問題轉(zhuǎn)化為求兩等圓P、Q,使它們與O相內(nèi)切,與A、B相外切.建立如圖所示的坐標(biāo)系,并設(shè)P的半徑為r,則|PA|+|PO|=1+r+1.5r=2.5點(diǎn)P在以A、O為焦點(diǎn),長(zhǎng)軸長(zhǎng)2.5的橢圓上,其方程為=1 同理P也在以O(shè)、B為焦
28、點(diǎn),長(zhǎng)軸長(zhǎng)為2的橢圓上,其方程為(x)2+y2=1 由、可解得,r=故所求圓柱的直徑為 cm.例3 直線L:與圓O:相交于A、B兩點(diǎn),當(dāng)k變動(dòng)時(shí),弦AB的中點(diǎn)M的軌跡方程.錯(cuò)解:易知直線恒過定點(diǎn)P(5,0),再由,得:,整理得:分析:求動(dòng)點(diǎn)軌跡時(shí)應(yīng)注意它的完備性與純粹性。本題中注意到點(diǎn)M應(yīng)在圓內(nèi),故易求得軌跡為圓內(nèi)的部分,此時(shí).例4 已知A、B為兩定點(diǎn),動(dòng)點(diǎn)M到A與到B的距離比為常數(shù),求點(diǎn)M的軌跡方程,并注明軌跡是什么曲線.解:建立坐標(biāo)系如圖所示,設(shè)|AB|=2a,則A(a,0),B(a,0).設(shè)M(x,y)是軌跡上任意一點(diǎn).則由題設(shè),得=,坐標(biāo)代入,得=,化簡(jiǎn)得(12)x2+(12)y2+2
29、a(1+2)x+(12)a2=0(1)當(dāng)=1時(shí),即|MA|=|MB|時(shí),點(diǎn)M的軌跡方程是x=0,點(diǎn)M的軌跡是直線(y軸).(2)當(dāng)1時(shí),點(diǎn)M的軌跡方程是x2+y2+x+a2=0.點(diǎn)M的軌跡是以(,0)為圓心,為半徑的圓.例5若拋物線y=ax2-1上,總存在不同的兩點(diǎn)A、B關(guān)于直線y+x=0對(duì)稱,求實(shí)數(shù)a的取值范圍.分析:若存在A、B關(guān)于直線y+x=0對(duì)稱,A、B必在與直線y+x=0垂直的直線系中某一條與拋物線y=ax2-1相交的直線上,并且A、B的中點(diǎn)M恒在直線y+x=0上.解:如圖所示,設(shè)與直線y+x=0垂直的直線系方程為y=x+b由 得ax2-x-(b+1)=0 令 0 即 (-1)-4a
30、-(b+1)0 整理得 4ab+4a+10 在的條件下,由可以得到直線y=x+b、拋物線y=ax2-1的交點(diǎn)A、B的中點(diǎn)M的坐標(biāo)為(,+b),要使A、B關(guān)于直線y+x=0對(duì)稱,則中點(diǎn)M應(yīng)該在直線y+x=0上,所以有+(+b)=0 即 b=- 代入解不等式得 a因此,當(dāng)a時(shí),拋物線y=ax2-1上總存在不同的兩點(diǎn)A、B關(guān)于直線y+x=0對(duì)稱.四、典型習(xí)題導(dǎo)練1.已知橢圓的焦點(diǎn)是F1、F2,P是橢圓上的一個(gè)動(dòng)點(diǎn),如果延長(zhǎng)F1P到Q,使得|PQ|=|PF2|,那么動(dòng)點(diǎn)Q的軌跡是( )A.圓 B.橢圓C.雙曲線的一支 D.拋物線2.高為5 m和3 m的兩根旗桿豎在水平地面上,且相距10 m,如果把兩旗
31、桿底部的坐標(biāo)分別確定為A(5,0)、B(5,0),則地面觀測(cè)兩旗桿頂端仰角相等的點(diǎn)的軌跡方程是_.3設(shè)直線2x-y-=0與y軸的交點(diǎn)為P,點(diǎn)P把圓(x+1)2+y2 25的直徑分為兩段,則其長(zhǎng)度之比是 4.已知A、B、C是直線上的三點(diǎn),且|AB|=|BC|=6,O切直線于點(diǎn)A,又過B、C作O異于的兩切線,設(shè)這兩切線交于點(diǎn)P,求點(diǎn)P的軌跡方程.5.雙曲線=1的實(shí)軸為A1A2,點(diǎn)P是雙曲線上的一個(gè)動(dòng)點(diǎn),引A1QA1P,A2QA2P,A1Q與A2Q的交點(diǎn)為Q,求Q點(diǎn)的軌跡方程.6.已知橢圓=1(ab0),點(diǎn)P為其上一點(diǎn),F(xiàn)1、F2為橢圓的焦點(diǎn),F(xiàn)1PF2的外角平分線為,點(diǎn)F2關(guān)于的對(duì)稱點(diǎn)為Q,F(xiàn)2Q
32、交于點(diǎn)R.(1)當(dāng)P點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求R形成的軌跡方程;(2)設(shè)點(diǎn)R形成的曲線為C,直線l:y=k(x+a)與曲線C相交于A、B兩點(diǎn),當(dāng)AOB的面積取得最大值時(shí),求k的值.錯(cuò)解剖析得真知(二十四) 75綜合問題選講一、知識(shí)導(dǎo)學(xué)(一)直線和圓的方程1理解直線的斜率的概念,掌握過兩點(diǎn)的直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程. 2掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式,能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系.3了解二元一次不等式表示平面區(qū)域. 4了解線性規(guī)劃的意義,并會(huì)簡(jiǎn)單的應(yīng)用.5了解解析幾何的基本思想,了解坐標(biāo)法.6掌
33、握?qǐng)A的標(biāo)準(zhǔn)方程和一般方程,了解參數(shù)方程的概念,理解圓的參數(shù)方程.(二)圓錐曲線方程1 掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡(jiǎn)單幾何性質(zhì).2 掌握雙曲線的定義、標(biāo)準(zhǔn)方程和雙曲線的簡(jiǎn)單幾何性質(zhì).3 掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡(jiǎn)單幾何性質(zhì).4了解圓錐曲線的初步應(yīng)用.(三)目標(biāo)1.能正確導(dǎo)出由一點(diǎn)和斜率確定的直線的點(diǎn)斜式方程;從直線的點(diǎn)斜式方程出發(fā)推導(dǎo)出直線方程的其他形式,斜截式、兩點(diǎn)式、截距式;能根據(jù)已知條件,熟練地選擇恰當(dāng)?shù)姆匠绦问綄懗鲋本€的方程,熟練地進(jìn)行直線方程的不同形式之間的轉(zhuǎn)化,能利用直線的方程來研究與直線有關(guān)的問題了.2.能正確畫出二元一次不等式(組)表示的平面區(qū)域,知道線性規(guī)劃的
34、意義,知道線性約束條件、線性目標(biāo)函數(shù)、可行解、可行域、最優(yōu)解等基本概念,能正確地利用圖解法解決線性規(guī)劃問題,并用之解決簡(jiǎn)單的實(shí)際問題,了解線性規(guī)劃方法在數(shù)學(xué)方面的應(yīng)用;會(huì)用線性規(guī)劃方法解決一些實(shí)際問題.3.理解“曲線的方程”、“方程的曲線”的意義,了解解析幾何的基本思想,掌握求曲線的方程的方法.4掌握?qǐng)A的標(biāo)準(zhǔn)方程:(r0),明確方程中各字母的幾何意義,能根據(jù)圓心坐標(biāo)、半徑熟練地寫出圓的標(biāo)準(zhǔn)方程,能從圓的標(biāo)準(zhǔn)方程中熟練地求出圓心坐標(biāo)和半徑,掌握?qǐng)A的一般方程:,知道該方程表示圓的充要條件并正確地進(jìn)行一般方程和標(biāo)準(zhǔn)方程的互化,能根據(jù)條件,用待定系數(shù)法求出圓的方程,理解圓的參數(shù)方程(為參數(shù)),明確各字
35、母的意義,掌握直線與圓的位置關(guān)系的判定方法.5正確理解橢圓、雙曲線和拋物線的定義,明確焦點(diǎn)、焦距的概念;能根據(jù)橢圓、雙曲線和拋物線的定義推導(dǎo)它們的標(biāo)準(zhǔn)方程;記住橢圓、雙曲線和拋物線的各種標(biāo)準(zhǔn)方程;能根據(jù)條件,求出橢圓、雙曲線和拋物線的標(biāo)準(zhǔn)方程;掌握橢圓、雙曲線和拋物線的幾何性質(zhì):范圍、對(duì)稱性、頂點(diǎn)、離心率、準(zhǔn)線(雙曲線的漸近線)等,從而能迅速、正確地畫出橢圓、雙曲線和拋物線;掌握、b、之間的關(guān)系及相應(yīng)的幾何意義;利用橢圓、雙曲線和拋物線的幾何性質(zhì),確定橢圓、雙曲線和拋物線的標(biāo)準(zhǔn)方程,并解決簡(jiǎn)單問題;理解橢圓、雙曲線和拋物線的參數(shù)方程,并掌握它的應(yīng)用;掌握直線與橢圓、雙曲線和拋物線位置關(guān)系的判定方法.二、疑難知識(shí)導(dǎo)析 1 直線的斜率是一個(gè)非常重要的概念,斜率反映了直線相對(duì)于軸的傾斜程度.當(dāng)斜率存在時(shí),直線方程通常用點(diǎn)斜式或斜截式表示,當(dāng)斜率不存在時(shí),直線方程為=(R).因此,利用直線的點(diǎn)斜式或斜截式方程解題時(shí),斜率存在與否,要分別考慮. 直線的截距式是兩點(diǎn)式的特例,、b分別是直線在軸、軸上的截距,因?yàn)?,b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度虛擬現(xiàn)實(shí)設(shè)備研發(fā)與委托生產(chǎn)合同
- 2024年度機(jī)械設(shè)備買賣合同樣本
- 2024年度人力資源外包與招聘服務(wù)協(xié)議
- 2024年度物流園區(qū)建設(shè)與運(yùn)營(yíng)合同
- 2024年員工保密協(xié)議模板
- 2024年度自建房施工合同終止合同
- 2024年工程預(yù)付款資金監(jiān)管協(xié)議
- 2024出版社與作者之間的出版合同
- 2024年度企業(yè)文化建設(shè)合作協(xié)議
- 2024年建筑企業(yè)與監(jiān)理單位服務(wù)協(xié)議
- 中國(guó)女性生理健康白皮書
- 天然氣巡檢記錄表
- 甲苯磺酸瑞馬唑侖臨床應(yīng)用
- 民法典講座-繼承篇
- 外包施工單位入廠安全培訓(xùn)(通用)
- 糖尿病健康知識(shí)宣教課件
- 客戶接觸點(diǎn)管理課件
- Python語言學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 醫(yī)學(xué)-心臟驟停急救培訓(xùn)-心臟驟停急救教學(xué)課件
- 高中英語-Book 1 Unit 4 Click for a friend教學(xué)課件設(shè)計(jì)
- 年產(chǎn)30萬噸碳酸鈣粉建設(shè)項(xiàng)目可行性研究報(bào)告
評(píng)論
0/150
提交評(píng)論