




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、第二章微積分學(xué)的創(chuàng)始人: 德國數(shù)學(xué)家 Leibniz 微分學(xué)導(dǎo)數(shù)導(dǎo)數(shù)描述函數(shù)變化快慢微分微分描述函數(shù)變化程度都是描述物質(zhì)運動的工具 (從微觀上研究函數(shù))導(dǎo)數(shù)與微分導(dǎo)數(shù)思想最早由法國數(shù)學(xué)家 Ferma 在研究極值問題中提出.英國數(shù)學(xué)家 Newton一、引例一、引例二、導(dǎo)數(shù)的定義二、導(dǎo)數(shù)的定義三、導(dǎo)數(shù)的幾何意義三、導(dǎo)數(shù)的幾何意義四、函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系四、函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系五、單側(cè)導(dǎo)數(shù)五、單側(cè)導(dǎo)數(shù)第一節(jié)第一節(jié)導(dǎo)數(shù)的概念導(dǎo)數(shù)的概念 第二章 一、一、 引例引例1. 變速直線運動的速度變速直線運動的速度設(shè)描述質(zhì)點運動位置的函數(shù)為)(tfs 0t則 到 的平均速度為0tt v)()(0tft
2、f0tt 而在 時刻的瞬時速度為0t lim0ttv)()(0tftf0tt 221tgs so)(0tf)(tft自由落體運動 xyo)(xfy C2. 曲線的切線斜率曲線的切線斜率曲線)(:xfyCNT0 xM在 M 點處的切線x割線 M N 的極限位置 M T(當(dāng) 時)割線 M N 的斜率tan)()(0 xfxf0 xx 切線 MT 的斜率tanktanlim lim0 xxk)()(0 xfxf0 xx 兩個問題的共性共性:so0t)(0tf)(tft瞬時速度 lim0ttv)()(0tftf0tt 切線斜率xyo)(xfy CNT0 xMx lim0 xxk)()(0 xfxf0
3、xx 所求量為函數(shù)增量與自變量增量之比的極限 .二、導(dǎo)數(shù)的定義二、導(dǎo)數(shù)的定義定義定義1 . 設(shè)函數(shù))(xfy 在點0 x0limxx00)()(xxxfxfxyx0lim)()(0 xfxfy0 xxx存在,)(xf并稱此極限為)(xfy 記作:;0 xxy; )(0 xf ;dd0 xxxy0d)(dxxxxf即0 xxy)(0 xf xyx0limxxfxxfx)()(lim000hxfhxfh)()(lim000則稱函數(shù)若的某鄰域內(nèi)有定義 , 在點0 x處可導(dǎo)可導(dǎo), 在點0 x的導(dǎo)數(shù)導(dǎo)數(shù). 運動質(zhì)點的位置函數(shù))(tfs so0t)(0tf)(tft在 時刻的瞬時速度0t lim0ttv)
4、()(0tftf0tt 曲線)(:xfyC在 M 點處的切線斜率xyo)(xfy CNT0 xMx lim0 xxk)()(0 xfxf0 xx )(0tf )(0 xf 0limxx00)()(xxxfxfxyx0lim)()(0 xfxfy0 xxx若上述極限不存在 ,在點 不可導(dǎo). 0 x若,lim0 xyx也稱)(xf在0 x若函數(shù)在開區(qū)間 I 內(nèi)每點都可導(dǎo),此時導(dǎo)數(shù)值構(gòu)成的新函數(shù)稱為導(dǎo)函數(shù).記作:;y;)(xf ;ddxy.d)(dxxf注意注意:)(0 xf 0)(xxxf就說函數(shù)就稱函數(shù)在 I 內(nèi)可導(dǎo). 的導(dǎo)數(shù)為無窮大 .例例1. 求函數(shù)Cxf)(C 為常數(shù)) 的導(dǎo)數(shù). 解解:y
5、xCCx0lim0即0)(C例例2. 求函數(shù))N()(nxxfn.處的導(dǎo)數(shù)在ax 解解:axafxf)()(ax lim)(af axaxnnaxlim(limax1nx2nxa32nxa)1na1nanxxfxxf)()(0limx說明:說明:對一般冪函數(shù)xy ( 為常數(shù)) 1)(xx例如,例如,)(x)(21 x2121xx21x1)(1x11x21x)1(xx)(43x4743x(以后將證明)hxhxhsin)sin(lim0例例3. 求函數(shù)xxfsin)(的導(dǎo)數(shù). 解解:,xh令則)(xf hxfhxf)()(0limh0limh)2cos(2hx 2sinh)2cos(lim0hxh
6、22sinhhxcos即xxcos)(sin類似可證得xxsin)(cosh)1(lnxh例例4. 求函數(shù)xxfln)(的導(dǎo)數(shù). 解解: )(xf hxfhxf)()(0limhhxhxhln)ln(lim0hh1lim0)1(lnxh即xx1)(ln0limhh1x1xx10limh)1(lnxhhxelnx1x1xhhh1lim0或則令,0hxt原式htfhtfh2)()2(lim0)(lim0tfh)(0 xf 是否可按下述方法作:例例5. 證明函數(shù)xxf)(在 x = 0 不可導(dǎo). 證證:hfhf)0()0(hh0h,10h,1hfhfh)0()0(lim0不存在 , .0不可導(dǎo)在即x
7、x例例6. 設(shè))(0 xf 存在, 求極限.2)()(lim000hhxfhxfh解解: 原式0limhhhxf2)(0)(0 xfhhxf2)( 0)(0 xf)(210 xf )(210 xf )(0 xf )( 2 )(0hhxf)(0 xf三、三、 導(dǎo)數(shù)的幾何意義導(dǎo)數(shù)的幾何意義xyo)(xfy CT0 xM曲線)(xfy 在點),(00yx的切線斜率為)(tan0 xf 若,0)(0 xf曲線過上升;若,0)(0 xf曲線過下降;xyo0 x),(00yx若,0)(0 xf切線與 x 軸平行,稱為駐點駐點;),(00yx),(00yx0 x若,)(0 xf切線與 x 軸垂直 .曲線在點
8、處的),(00yx切線方程切線方程:)(000 xxxfyy法線方程法線方程:)()(1000 xxxfyy)0)(0 xfxyo0 x,)(0時 xf1111例例7. 問曲線3xy 哪一點有垂直切線 ? 哪一點處的切線與直線131xy平行 ? 寫出其切線方程.解解:)(3xy3231x,13132x,0 xy0 x令,3113132x得,1x對應(yīng),1y則在點(1,1) , (1,1) 處與直線131xy平行的切線方程分別為),1(131xy) 1(131xy即023 yx故在原點 (0 , 0) 有垂直切線處可導(dǎo)在點xxf)(四、四、 函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系定理
9、定理1.處連續(xù)在點xxf)(證證: 設(shè))(xfy 在點 x 處可導(dǎo),)(lim0 xfxyx存在 , 因此必有,)(xfxy其中0lim0 x故xxxfy)(0 x0所以函數(shù))(xfy 在點 x 連續(xù) .注意注意: 函數(shù)在點 x 連續(xù)未必可導(dǎo)連續(xù)未必可導(dǎo).反例反例:xy xyoxy 在 x = 0 處連續(xù) , 但不可導(dǎo).即在點0 x的某個右右 鄰域內(nèi)五、五、 單側(cè)導(dǎo)數(shù)單側(cè)導(dǎo)數(shù))(xfy 若極限xxfxxfxyxx)()(limlim0000則稱此極限值為)(xf在 處的右右 導(dǎo)數(shù)導(dǎo)數(shù),0 x記作)(0 xf即)(0 xfxxfxxfx)()(lim000(左)(左左)0( x)0( x)(0
10、xf0 x例如例如,xxf)(在 x = 0 處有,1)0(f1)0(fxyoxy 定義定義2 . 設(shè)函數(shù)有定義,存在,定理定理2. 函數(shù)在點0 x)(xfy ,)()(00存在與xfxf且)(0 xf. )(0 xf)(0 xf 存在)(0 xf)(0 xf簡寫為在點處右右 導(dǎo)數(shù)存在0 x定理定理3. 函數(shù))(xf)(xf在點0 x必 右右 連續(xù).(左左)(左左)若函數(shù))(xf)(af)(bf與都存在 , 則稱)(xf顯然:)(xf在閉區(qū)間 a , b 上可導(dǎo),)(baCxf在開區(qū)間 內(nèi)可導(dǎo),),(ba在閉區(qū)間 上可導(dǎo).,ba可導(dǎo)的充分必要條件是且內(nèi)容小結(jié)內(nèi)容小結(jié)1. 導(dǎo)數(shù)的實質(zhì):3. 導(dǎo)數(shù)
11、的幾何意義:4. 可導(dǎo)必連續(xù), 但連續(xù)不一定可導(dǎo);5. 已學(xué)求導(dǎo)公式 :6. 判斷可導(dǎo)性不連續(xù), 一定不可導(dǎo).直接用導(dǎo)數(shù)定義;看左右導(dǎo)數(shù)是否存在且相等. )(C )(x )(sin x )(cosxaxf)(02. axfxf)()(00 )(ln x;0;1x;cosx;sin xx1增量比的極限;切線的斜率;作業(yè)作業(yè)P83 9(2)(4)(5)(7); 13; 17 思考與練習(xí)思考與練習(xí)1. 函數(shù) 在某點 處的導(dǎo)數(shù))(xf0 x)(0 xf )(xf 區(qū)別:)(xf 是函數(shù) ,)(0 xf 是數(shù)值;聯(lián)系:0)(xxxf)(0 xf 注意注意:有什么區(qū)別與聯(lián)系 ? )()(00 xfxf?與
12、導(dǎo)函數(shù)2. 設(shè))(0 xf 存在 , 則._)()(lim000hxfhxfh3. 已知,)0(,0)0(0kff則._)(lim0 xxfx)(0 xf 0k4. 若),(x時, 恒有,)(2xxf問)(xf是否在0 x可導(dǎo)?解解:由題設(shè))0(f00)0()(xfxfx0由夾逼準(zhǔn)則0)0()(lim0 xfxfx0故)(xf在0 x可導(dǎo), 且0)0( f5. 設(shè)0,0,sin)(xxaxxxf, 問 a 取何值時,)(xf 在),(都存在 , 并求出. )(xf 解解:)0(f00sinlim0 xxx1)0(f00lim0 xxaxa故1a時,1)0( f此時)(xf 在),(都存在, )
13、(xf0,cosxx0,1x顯然該函數(shù)在 x = 0 連續(xù) .牛頓牛頓(1642 1727)偉大的英國數(shù)學(xué)家 , 物理學(xué)家, 天文學(xué)家和自然科學(xué)家. 他在數(shù)學(xué)上的卓越貢獻是創(chuàng)立了微積分. 1665年他提出正流數(shù) (微分) 術(shù) , 次年又提出反流數(shù)(積分)術(shù),并于1671年完成流數(shù)術(shù)與無窮級數(shù)一書 (1736年出版). 他還著有自然哲學(xué)的數(shù)學(xué)原理和廣義算術(shù)等 .萊布尼茲萊布尼茲(1646 1716)德國數(shù)學(xué)家, 哲學(xué)家.他和牛頓同為微積分的創(chuàng)始人 , 他在學(xué)藝雜志上發(fā)表的幾篇有關(guān)微積分學(xué)的論文中,有的早于牛頓, 所用微積分符號也遠遠優(yōu)于牛頓 . 他還設(shè)計了作乘法的計算機 , 系統(tǒng)地闡述二進制計數(shù)法 , 并把它與中國的八卦聯(lián)系起來 .備用題備用題 解解: 因為1. 設(shè))(xf 存在, 且, 12)1 () 1 (lim0 xxffx求).1 (f xxffx2)1 () 1 (l
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)連帶擔(dān)保借款合同模板
- 道路拓寬及改造工程合同
- 辦公用房租賃合同英文范本
- 廚師服務(wù)合同樣本
- 夫妻共同購房合同條款
- 女方凈身出戶離婚法律合同模板
- 跨境融資合同(一)
- 職業(yè)技術(shù)學(xué)院大學(xué)生創(chuàng)新創(chuàng)業(yè)項目合同
- 新能源汽車電機技術(shù)演進與產(chǎn)業(yè)鏈創(chuàng)新考核試卷
- 文化產(chǎn)業(yè)與體育賽事結(jié)合考核試卷
- 北師大版二年級數(shù)學(xué)下冊導(dǎo)學(xué)案全冊
- 小學(xué)六年級綜合實踐有趣的魔方世界課件
- (新版)國網(wǎng)網(wǎng)絡(luò)安全攻防學(xué)習(xí)考試題庫(含答案)
- 煙葉分級工新教材(高級篇)
- 如何做好葆嬰事業(yè)四張紙
- 制造企業(yè)人事管理制度范本
- 社區(qū)衛(wèi)生服務(wù)管理(第一章新)課件
- 公路瀝青路面施工技術(shù)規(guī)范JTGF40-2004
- 全方位管理理念下腫瘤心臟病學(xué)課件
- 普通生物學(xué)普通生物學(xué)試題
- H.248協(xié)議正常呼叫流程解析
評論
0/150
提交評論