




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、1Introduction2Course Objectives This course gives an introduction to basic neural network architectures and learning rules. Emphasis is placed on the mathematical analysis of these networks, on methods of training them and on their application to practical engineering problems in such areas as patte
2、rn recognition, signal processing and control systems.3What Will Not Be Covered Review of all architectures and learning rules Implementation VLSI Optical Parallel Computers Biology Psychology4Historical Sketch Pre-1940: von Hemholtz, Mach, Pavlov, etc. General theories of learning, vision, conditio
3、ning No specific mathematical models of neuron operation 1940s: Hebb, McCulloch and Pitts Mechanism for learning in biological neurons Neural-like networks can compute any arithmetic function 1950s: Rosenblatt, Widrow and Hoff First practical networks and learning rules 1960s: Minsky and Papert Demo
4、nstrated limitations of existing neural networks, new learning algorithms are not forthcoming, some research suspended 1970s: Amari, Anderson, Fukushima, Grossberg, Kohonen Progress continues, although at a slower pace 1980s: Grossberg, Hopfield, Kohonen, Rumelhart, etc. Important new developments c
5、ause a resurgence in the field5Applications Aerospace High performance aircraft autopilots, flight path simulations, aircraft control systems, autopilot enhancements, aircraft component simulations, aircraft component fault detectors Automotive Automobile automatic guidance systems, warranty activit
6、y analyzers Banking Check and other document readers, credit application evaluators Defense Weapon steering, target tracking, object discrimination, facial recognition, new kinds of sensors, sonar, radar and image signal processing including data compression, feature extraction and noise suppression
7、, signal/image identification Electronics Code sequence prediction, integrated circuit chip layout, process control, chip failure analysis, machine vision, voice synthesis, nonlinear modeling6Applications Financial Real estate appraisal, loan advisor, mortgage screening, corporate bond rating, credi
8、t line use analysis, portfolio trading program, corporate financial analysis, currency price prediction Manufacturing Manufacturing process control, product design and analysis, process and machine diagnosis, real-time particle identification, visual quality inspection systems, beer testing, welding
9、 quality analysis, paper quality prediction, computer chip quality analysis, analysis of grinding operations, chemical product design analysis, machine maintenance analysis, project bidding, planning and management, dynamic modeling of chemical process systems Medical Breast cancer cell analysis, EE
10、G and ECG analysis, prosthesis design, optimization of transplant times, hospital expense reduction, hospital quality improvement, emergency room test advisement7Applications Robotics Trajectory control, forklift robot, manipulator controllers, vision systems Speech Speech recognition, speech compre
11、ssion, vowel classification, text to speech synthesis Securities Market analysis, automatic bond rating, stock trading advisory systems Telecommunications Image and data compression, automated information services, real-time translation of spoken language, customer payment processing systems Transpo
12、rtation Truck brake diagnosis systems, vehicle scheduling, routing systems8Biology Neurons respond slowly 10-3 s compared to 10-9 s for electrical circuits The brain uses massively parallel computation 1011 neurons in the brain 104 connections per neuron 9Neuron ModelandNetwork Architectures10Single
13、-Input Neuron11Transfer Functions12Transfer Functions13Multiple-Input NeuronAbreviated Notation14Layer of Neurons15Abbreviated NotationWw1 1,w1 2, w1 R,w2 1,w2 2, w2 R,wS 1,wS 2, wS R,=b12S=bbbpp1p2pR=aa1a2aS=16Multilayer Network17Abreviated NotationHidden LayersOutput Layer18Delays and Integrators1
14、9Recurrent Networka2 satlins Wa1 b+=a1 satlins Wa0 b+satlins Wpb+=20AnIllustrativeExample21Apple/Banana Sorter22Prototype Vectorspshapetextureweight=p2111=Prototype BananaPrototype AppleShape: 1 : round ; -1 : elipticalTexture: 1 : smooth ; -1 : roughWeight: 1 : 1 lb. ; -1 : 1 lb.MeasurementVectorp1
15、111=23Perceptron24Two-Input Caseahardlims n hardlims1 2p2+=w1 1,1=w1 2,2=Wpb+0=1 2p2+0=Decision Boundary25Apple/Banana Exampleahardlimsw1 1,w1 2,w1 3,p1p2p3b+=The decision boundary shouldseparate the prototype vectors.p10=10 0p1p2p30+0=The weight vector should be orthogonal to the decision boundary,
16、 and should point in the direction of the vector which should produce an output of 1. The bias determines the position of the boundary26Testing the Networkahardlims10 01110+1 banana=Banana:Apple:ahardlims10 01110+1 apple=“Rough” Banana:ahardlims10 01110+1 banana=27Hamming Network28Feedforward LayerF
17、or Banana/Apple RecognitionW1p1Tp2T111111=b1RR33=a1W1pb1+p1Tp2Tp33+p1Tp3+p2Tp3+=S2=29Recurrent LayerW211=1S1- - - - - - -a2t1+poslin11a2t poslina12t a22t a22t a12t =30Hamming Operationp111=Input (Rough Banana)a11111 1111133+13+13+42=First Layer31Hamming Operationa21 poslin W2a20 poslin10.50.5142posl
18、in3030=a22 poslin W2a21 poslin10.50.5130poslin31.530=Second Layer32Hopfield Network33Apple/Banana ProblemW1.20000.2000 0.2b,00.90.9=a1t1+satlins 1.2a1t =a2t1+satlins 0.2a2t 0.9+=a3t1+satlins 0.2a3t 0.9=a0 111=a1 10.71=a2 111=a3 111=Test: “Rough” Banana(Banana)34Summary Perceptron Feedforward Network
19、 Linear Decision Boundary One Neuron for Each Decision Hamming Network Competitive Network First Layer Pattern Matching (Inner Product) Second Layer Competition (Winner-Take-All) # Neurons = # Prototype Patterns Hopfield Network Dynamic Associative Memory Network Network Output Converges to a Protot
20、ype Pattern # Neurons = # Elements in each Prototype Pattern35Perceptron Learning Rule36Learning Rulesp1t1, p2t2, pQtQ, Supervised LearningNetwork is provided with a set of examplesof proper network behavior (inputs/targets) Reinforcement LearningNetwork is only provided with a grade, or score,which
21、 indicates network performance Unsupervised LearningOnly network inputs are available to the learningalgorithm. Network learns to categorize (cluster)the inputs.37Perceptron ArchitectureWw1 1,w1 2, w1 R,w2 1,w2 2, w2 R,wS 1,wS 2, wS R,=wiwi 1,wi 2,wi R,=WwT1wT2wTS=aihardlim nihardlimwTipbi+=38Single
22、-Neuron PerceptronahardlimwT1pb+hardlim w1 1,p1w1 2,p2b+=w1 1,1=w1 2,1=b1=39Decision BoundarywT1pb+0=wT1pb= All points on the decision boundary have the same inner product with the weight vector. Therefore they have the same projection onto the weight vector, and they must lie on a line orthogonal t
23、o the weight vector40Example - ORp100=t10=,p201=t21=,p310=t31=,p411=t41=,41OR Solutionw10.50.5=wT1pb+0.5 0.500.5b+0.25b+0=b0.25=Weight vector should be orthogonal to the decision boundary.Pick a point on the decision boundary to find the bias.42Multiple-Neuron PerceptronEach neuron will have its own
24、 decision boundary.wTipbi+0=A single neuron can classify input vectors into two categories.A multi-neuron perceptron can classify input vectors into 2S categories.43Learning Rule Test Problemp1t1,p2t2, pQtQ,p112=t11=,p212=t20=,p301=t30=,44Starting Pointw11.00.8=Present p1 to the network:ahardlimwT1p
25、1hardlim1.00.812=ahardlim0.60=Random initial weight:Incorrect Classification.45Tentative Learning Rule Set 1w to p1 Not stable Add p1 to 1wIf t1 and a0, then w1neww1oldp+=w1neww1oldp1+1.00.812+2.01.2=Tentative Rule:46Second Input VectorIf t0 and a1, then w1neww1oldp=ahardlimwT1p2hardlim2.0 1.212=aha
26、rdlim 0.41=(Incorrect Classification)Modification to Rule:w1neww1oldp22.01.2123.00.8=47Third Input VectorPatterns are now correctly classified.ahardlimwT1p3hardlim3.00.801=ahardlim 0.81=(Incorrect Classification)w1neww1oldp33.00.8013.00.2=If ta, then w1neww1o ld.=48Unified Learning RuleIf t1 and a0, then w1neww1oldp+=If t0 and a1, then w1n eww1oldp=If ta, then w1neww1old=eta=If e1, then w1neww1oldp+= =If e1, then w1neww1oldp=If e0, then w1neww1old=w1neww1oldep+w1oldtap+=bnewbold
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合同視角下的產(chǎn)品經(jīng)銷三方合作
- 工業(yè)園區(qū)食堂勞務(wù)合同標準版
- 梧州市長洲區(qū)政府綠化工程委托合同
- 隱名投資利益分配合同
- 代理社保業(yè)務(wù)合同合作協(xié)議2025
- 代理合作協(xié)議合同模板
- 搪瓷企業(yè)設(shè)備更新與技術(shù)改造考核試卷
- 旅游客運突發(fā)事件應(yīng)急預(yù)案考核試卷
- 政策性銀行服務(wù)農(nóng)村電商與精準扶貧考核試卷
- 后勤服務(wù)中的客戶關(guān)系管理測試考核試卷
- 2024年下半年東方電氣長三角(杭州)創(chuàng)新研究院限公司第二批招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 【重點易錯題每日一練小紙條】二年級數(shù)學(xué)下冊
- 2024年小紅書初級營銷師題庫
- 2022年公務(wù)員多省聯(lián)考《申論》真題(重慶二卷)及答案解析
- -2012橋梁樁基施工方案
- 人教PEP版(2024)三年級上冊英語Unit 6《Useful numbers》單元作業(yè)設(shè)計
- 課題1 碳單質(zhì)的多樣性(第1課時)課件九年級化學(xué)上冊人教版2024
- 康復(fù)醫(yī)學(xué)題庫與答案
- 早孕超聲圖像課件
- 部編版語文三年級下冊綜合性閱讀-理解人物情感-課件-(共32張課件).課件
- 2024年中國甜瓜市場調(diào)查研究報告
評論
0/150
提交評論