內(nèi)蒙古巴彥淖爾市杭錦后旗奮斗2022年高考數(shù)學全真模擬密押卷含解析_第1頁
內(nèi)蒙古巴彥淖爾市杭錦后旗奮斗2022年高考數(shù)學全真模擬密押卷含解析_第2頁
內(nèi)蒙古巴彥淖爾市杭錦后旗奮斗2022年高考數(shù)學全真模擬密押卷含解析_第3頁
內(nèi)蒙古巴彥淖爾市杭錦后旗奮斗2022年高考數(shù)學全真模擬密押卷含解析_第4頁
內(nèi)蒙古巴彥淖爾市杭錦后旗奮斗2022年高考數(shù)學全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經(jīng)過,設球的半徑分別為,則( )ABCD2關于函數(shù)

2、在區(qū)間的單調(diào)性,下列敘述正確的是( )A單調(diào)遞增B單調(diào)遞減C先遞減后遞增D先遞增后遞減3已知是的共軛復數(shù),則( )ABCD4若,則“”是 “”的( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分也不必要條件5已知,且,則( )ABCD6已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則( )A3BCD7執(zhí)行下面的程序框圖,如果輸入,則計算機輸出的數(shù)是( )ABCD8已知向量,則是的( )A充分不必要條件B必要不充分條件C既不充分也不必要條件D充要條件9已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是( )ABCD10設雙曲線(a0,b0)的

3、一個焦點為F(c,0)(c0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y22cx0截得的弦長為2,則該雙曲線的標準方程為( )ABCD11在直角梯形中,點為上一點,且,當?shù)闹底畲髸r,( )AB2CD12函數(shù)的一個零點在區(qū)間內(nèi),則實數(shù)a的取值范圍是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知復數(shù)z是純虛數(shù),則實數(shù)a_,|z|_14在ABC中,BAC,AD為BAC的角平分線,且,若AB2,則BC_.15已知實數(shù)a,b,c滿足,則的最小值是_.16已知函數(shù)與的圖象上存在關于軸對稱的點,則的取值范圍為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17

4、(12分) 選修4-4:極坐標與參數(shù)方程 在直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若射線與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值18(12分)已知函數(shù),()當時,證明;()已知點,點,設函數(shù),當時,試判斷的零點個數(shù)19(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設直線與平面相交于點,若,求的值20(12分)已知函數(shù),.(1)若不等式對恒成立,求的最小值;(2)證明:.(3)設方

5、程的實根為.令若存在,使得,證明:.21(12分)在等比數(shù)列中,已知,.設數(shù)列的前n項和為,且,(,).(1)求數(shù)列的通項公式;(2)證明:數(shù)列是等差數(shù)列;(3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.22(10分)已知橢圓的離心率為,且過點.(1)求橢圓C的標準方程;(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關系.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項

6、是符合題目要求的。1D【解析】由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內(nèi)切于正方體,設,兩球球心和公切點都在體對角線上,通過幾何關系可轉(zhuǎn)化出,進而求解【詳解】根據(jù)拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內(nèi)切于正方體,不妨設,兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以. 故選:D【點睛】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結合思想,

7、轉(zhuǎn)化思想,直觀想象與數(shù)學運算的核心素養(yǎng)2C【解析】先用誘導公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎題.3A【解析】先利用復數(shù)的除法運算法則求出的值,再利用共軛復數(shù)的定義求出a+bi,從而確定a,b的值,求出a+b【詳解】i,a+bii,a0,b1,a+b1,故選:A【點睛】本題主要考查了復數(shù)代數(shù)形式的乘除運算,考查了共軛復數(shù)的概念,是基礎題4A【解析】本題根據(jù)基本不等式,結合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題

8、目有一定難度,注重重要知識、基礎知識、邏輯推理能力的考查.【詳解】當時,則當時,有,解得,充分性成立;當時,滿足,但此時,必要性不成立,綜上所述,“”是“”的充分不必要條件.【點睛】易出現(xiàn)的錯誤有,一是基本不等式掌握不熟,導致判斷失誤;二是不能靈活的應用“賦值法”,通過特取的值,從假設情況下推出合理結果或矛盾結果.5B【解析】分析:首先利用同角三角函數(shù)關系式,結合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關于的式子,代入從而求得結果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點睛:該題考查的是有關同角三角函數(shù)關系式以及倍角公式的應用,在解題的過程中,

9、需要對已知真切求余弦的方法要明確,可以應用同角三角函數(shù)關系式求解,也可以結合三角函數(shù)的定義式求解.6C【解析】根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.7B【解

10、析】先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,故當輸入,則計算機輸出的數(shù)是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.8A【解析】向量,則,即,或者-1,判斷出即可【詳解】解:向量,則,即,或者-1,所以是或者的充分不必要條件,故選:A【點睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標表示,屬于基礎題.9C【解析】設,設直線的方程為:,與拋物線方程聯(lián)立,由得,利用韋達定理結合已知條件得,代入上式即可求出的取值范圍【詳解】設直線的方程

11、為:, ,聯(lián)立方程,消去得:,且,線段的中點為,,把 代入,得,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題10C【解析】由題得,又,聯(lián)立解方程組即可得,進而得出雙曲線方程.【詳解】由題得 又該雙曲線的一條漸近線方程為,且被圓x2+y22cx0截得的弦長為2,所以 又 由可得:,所以雙曲線的標準方程為.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),圓的方程的有關計算,考查了學生的計算能力.11B【解析】由題,可求出,所以,根據(jù)共線定理,設,利用向量三角形法則求出,結合題給,得出,進而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角

12、梯形中,可求得,所以點在線段上, 設 , 則,即,又因為所以,所以,當時,等號成立.所以.故選:B.【點睛】本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.12C【解析】顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個零點在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因為的一個零點在區(qū)間內(nèi),所以,即,解得,故選:C【點睛】本題考查零點存在性定理的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。131 1 【解析】根據(jù)復數(shù)運算法則計算復數(shù)z,根據(jù)復數(shù)的概念和模長公式計算得解.【詳解】復數(shù)z,復數(shù)z是純虛數(shù),解得a1,zi,|z|1

13、,故答案為:1,1【點睛】此題考查復數(shù)的概念和模長計算,根據(jù)復數(shù)是純虛數(shù)建立方程求解,計算模長,關鍵在于熟練掌握復數(shù)的運算法則.14【解析】由,求出長度關系,利用角平分線以及面積關系,求出邊,再由余弦定理,即可求解.【詳解】,,.故答案為:.【點睛】本題考查共線向量的應用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.15【解析】先分離出,應用基本不等式轉(zhuǎn)化為關于c的二次函數(shù),進而求出最小值.【詳解】解:若取最小值,則異號,根據(jù)題意得:,又由,即有,則,即的最小值為,故答案為:【點睛】本題考查了基本不等式以及二次函數(shù)配方求最值,屬于中檔題.16【解析】兩函數(shù)圖象上存在關于軸對稱的點

14、的等價命題是方程在區(qū)間上有解,化簡方程在區(qū)間上有解,構造函數(shù),求導,求出單調(diào)區(qū)間,利用函數(shù)性質(zhì)得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關于軸對稱的點,則方程在區(qū)間上有解,即方程在區(qū)間上有解,設函數(shù),其導數(shù),又由,可得:當時, 為減函數(shù),當時, 為增函數(shù),故函數(shù)有最小值,又由;比較可得: ,故函數(shù)有最大值,故函數(shù)在區(qū)間上的值域為;若方程在區(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點睛】本題利用導數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問題, 函數(shù)零點問題的拓展. 由于函數(shù)的零點就是方程的根,在研究方程的有關問題時,可以將方程問題轉(zhuǎn)化為函數(shù)問題解決. 此類問題的切入點是借助函數(shù)的零點,

15、結合函數(shù)的圖象,采用數(shù)形結合思想加以解決.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17 (1) 的極坐標方程為.曲線的直角坐標方程為. (2) 【解析】(1)先得到的一般方程,再由極坐標化直角坐標的公式得到一般方程,將代入得,得到曲線的直角坐標方程;(2)設點、的極坐標分別為,將 分別代入曲線、極坐標方程得:,之后進行化一,可得到最值,此時,可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標方程為.由得,將代入得,故曲線的直角坐標方程為.(2)設點、的極坐標分別為,將 分別代入曲線、極坐標方程得:,則 ,其中為銳角,且滿足,當時,取最大值,此時, 【點睛】這個題目考查

16、了參數(shù)方程化為普通方程的方法,極坐標化為直角坐標的方法,以及極坐標中極徑的幾何意義,極徑代表的是曲線上的點到極點的距離,在參數(shù)方程和極坐標方程中,能表示距離的量一個是極徑,一個是t的幾何意義,其中極徑多數(shù)用于過極點的曲線,而t的應用更廣泛一些.18()詳見解析;()1.【解析】()令,;則易得,即可證明;(),分, , 當時,討論的零點個數(shù)即可【詳解】解:( )令,;則令,易得在遞減,在遞增, ,在恒成立 在遞減,在遞增 ;( ) 點,點, , 當時,可知, , 在單調(diào)遞增, 在上有一個零點, 當時, ,在恒成立, 在無零點 當時, 在單調(diào)遞減, 在存在一個零點綜上,的零點個數(shù)為1【點睛】本題

17、考查了利用導數(shù)解決函數(shù)零點問題,考查了分類討論思想,屬于壓軸題19(1)證明見解析(2)(3)【解析】(1)取中點為,連接,由等邊三角形性質(zhì)可得,再由面面垂直的性質(zhì)可得,根據(jù)平行直線的性質(zhì)可得,進而求證;(2)以為原點,過作的平行線,分別以,分別為軸,軸,軸建立空間直角坐標系,設,由點在棱上,可設,即可得到,再求得平面的法向量,進而利用數(shù)量積求解;(3)設,則,求得,即可求得點的坐標,再由與平面的法向量垂直,進而求解.【詳解】(1)證明:取中點為,連接,因為是等邊三角形,所以,因為且相交于,所以平面,所以,因為,所以,因為,在平面內(nèi),所以,所以.(2)以為原點,過作的平行線,分別以,分別為軸,

18、軸,軸建立空間直角坐標系,設,則,因為在棱上,可設,所以,設平面的法向量為,因為,所以,即,令,可得,即,設直線與平面所成角為,所以,可知當時,取最大值.(3)設,則有,得,設,那么,所以,所以.因為,所以.又因為,所以,設平面的法向量為,則,即,可得,即 因為在平面內(nèi),所以,所以,所以,即,所以或者(舍),即.【點睛】本題考查面面垂直的證明,考查空間向量法求線面成角,考查運算能力與空間想象能力.20(1)(2)證明見解析(3)證明見解析【解析】(1)由題意可得,令,利用導數(shù)得在上單調(diào)遞減,進而可得結論;(2)不等式轉(zhuǎn)化為,令,利用導數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進而可將不等式轉(zhuǎn)化

19、為,再利用單調(diào)性可得,記,再利用導數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結論.【詳解】(1),即,化簡可得.令,因為,所以,.所以,在上單調(diào)遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設,則.在上,所以在上單調(diào)遞減.在上,所以在上單調(diào)遞增,所以.設,因為在上是減函數(shù),所以.所以,即.(3)證明:方程在區(qū)間上的實根為,即,要證,由可知,即要證.當時,因而在上單調(diào)遞增.當時,因而在上單調(diào)遞減.因為,所以,要證.即要證.記,.因為,所以,則.設,當時,.時,故.且,故,因為,所以.因此,即在上單調(diào)遞增.所以,即.故得證.【點睛】本題考查函數(shù)的單調(diào)性、最值、函數(shù)恒成立問題,考查導數(shù)的應用,轉(zhuǎn)化思想,構造函數(shù)研究單調(diào)性,屬于難題.21(1)(2)見解析(3)存在唯一的等差數(shù)列,其通項公式為,滿足題設【解析】(1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結果為常數(shù),即得證;(3)由(2)可得數(shù)列的通項公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論