研一下四高高金課件lecture_第1頁
研一下四高高金課件lecture_第2頁
研一下四高高金課件lecture_第3頁
研一下四高高金課件lecture_第4頁
研一下四高高金課件lecture_第5頁
已閱讀5頁,還剩33頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、Advanced Financial EconomicsLecture 12by Yinggang ZhouOutline (chapter 6)Gain from diversificationWhen correlation is 1, -1 and in between (-1,1)Minimum variance frontier (How to formulate it)? Efficient frontier (Upper portion of minimum variance frontier)Efficient frontier tangent to indifference

2、curve Optimal portfolio maximizing mean-variance preferenceCombine risky assets with risk-free assetAn additional and striking resultInvestors invest in the same two funds!No gain from perfect correlationRisk-return relation of portfolioGraphical illustrationWhat if correlation=-1?Risk-return relati

3、on of portfolioGraphical illustrationWhat if -1correlation1?we can compute the portfolio standard deviation and do it for various values of portfolio return to trace out risk-return relation, which has a sideways parabolic shapeRisk-return relation of portfolioExampleExample (continued)Example (cont

4、inued)Minimum variance frontier (MVF)How to formulate the idea?Three assets case Solve the optimization problemSolve a system of 3 linear equationsMore general formulationQuadratic programming problemMVF move with number of risky assetsEfficient frontier (EF)Mean-variance dominanceGraphical illustra

5、tion of mean-variance dominanceGraphical illustration of efficient frontierCombine efficient frontier with preferenceOptimal portfolio is tangent to efficient frontierAll investors choose optimal portfolios along the efficient frontierAn additional and striking resultWhat is risk-return relation?The risk-return relation is linear!Efficient frontier is linear too!Tangency portfolio and efficient frontierInvestors invest in the same two funds!Two fund (separation) theoremThe optimal portfolio of risky assets can be

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論