




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、PAGE - 138 -第一章 有理數(shù) 11正數(shù)和負(fù)數(shù) 第1課時三維目標(biāo) 1知識與技能 能判斷一個數(shù)是正數(shù)還是負(fù)數(shù),能用正數(shù)或負(fù)數(shù)表示生活中具有相反意義的量 2過程與方法 借助生活中的實例理解有理數(shù)的意義,體會負(fù)數(shù)引入的必要性和有理數(shù)應(yīng)用的廣泛性 3情感態(tài)度與價值觀 培養(yǎng)學(xué)生積極思考,合作交流的意識和能力教學(xué)重、難點與關(guān)鍵 1重點:正確理解負(fù)數(shù)的意義,掌握判斷一個數(shù)是正數(shù)還是負(fù)數(shù)的方法 2難點:正確理解負(fù)數(shù)的概念 3關(guān)鍵:創(chuàng)設(shè)情境,充分利用學(xué)生身邊熟悉的事物,加深對負(fù)數(shù)意義的理解教具準(zhǔn)備 班班通教學(xué)過程 一、課堂引入 我們知道,數(shù)是人們在實際生活和生活需要中產(chǎn)生,并不斷擴(kuò)充的人們由記數(shù)、排序、
2、產(chǎn)生數(shù)1,2,3,;為了表示“沒有物體”、“空位”引進(jìn)了數(shù)“0”,測量和分配有時不能得到整數(shù)的結(jié)果,為此產(chǎn)生了分?jǐn)?shù)和小數(shù) 在生活、生產(chǎn)、科研中經(jīng)常遇到數(shù)的表示與數(shù)的運(yùn)算的問題,例如課本第2頁至第3頁中提到的四個問題,這里出現(xiàn)的新數(shù):-3,-2,-2.7%在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7% 二、講授新課(1)、像-3,-2,-2.7%這樣的數(shù)(即在以前學(xué)過的0以外的數(shù)前面加上負(fù)號“”的數(shù))叫做負(fù)數(shù)而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,它們與負(fù)數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學(xué)過的0以外的數(shù))叫做正數(shù),有時在正數(shù)前面也加
3、上“”(正)號,例如,+3,+2,+0.5,+,就是3,2,0.5,一個數(shù)前面的“”、“”號叫做它的符號,這種符號叫做性質(zhì)符號(2)、中國古代用算籌(表示數(shù)的工具)進(jìn)行計算,紅色算籌表示正數(shù),黑色算籌表示負(fù)數(shù)(3)、數(shù)0既不是正數(shù),也不是負(fù)數(shù),但0是正數(shù)與負(fù)數(shù)的分界數(shù)(4) 、0可以表示沒有,還可以表示一個確定的量,如今天氣溫是0,是指一個確定的溫度;海拔0表示海平面的平均高度用正負(fù)數(shù)表示具有相反意義的量(5)、 把0以外的數(shù)分為正數(shù)和負(fù)數(shù),起源于表示兩種相反意義的量正數(shù)和負(fù)數(shù)在許多方面被廣泛地應(yīng)用在地形圖上表示某地高度時,需要以海平面為基準(zhǔn),通常用正數(shù)表示高于海平面的某地的海拔高度,負(fù)數(shù)表示
4、低于海平面的某地的海拔高度例如:珠穆朗瑪峰的海拔高度為8844m,吐魯番盆地的海拔高度為-155m記錄賬目時,通常用正數(shù)表示收入款額,負(fù)數(shù)表示支出款額(6)、 請學(xué)生解釋課本中圖11-2,圖11-3中的正數(shù)和負(fù)數(shù)的含義(7)、 你能再舉一些用正負(fù)數(shù)表示數(shù)量的實際例子嗎?(8)、例如,通常用正數(shù)表示汽車向東行駛的路程,用負(fù)數(shù)表示汽車向西行駛的路程;用正數(shù)表示水位升高的高度,用負(fù)數(shù)表示水位下降的高度;用正數(shù)表示買進(jìn)東西的數(shù)量,用負(fù)數(shù)表示賣出東西的數(shù)量三、鞏固練習(xí) 課本第3頁,練習(xí)1、2、3、4題四、課堂小結(jié) 為了表示現(xiàn)實生活中的具有相反意義的量,我們引進(jìn)了負(fù)數(shù)正數(shù)就是我們過去學(xué)過的數(shù)(除0外),在
5、正數(shù)前放上“”號,就是負(fù)數(shù),但不能說:“帶正號的數(shù)是正數(shù),帶負(fù)號的數(shù)是負(fù)數(shù)”,在一個數(shù)前面添上負(fù)號,它表示的是原數(shù)意義相反的數(shù)如果原數(shù)是一個負(fù)數(shù),那么前面放上“”號后所表示的數(shù)反而是正數(shù)了,另外應(yīng)注意“0”既不是正數(shù),也不是負(fù)數(shù)五、作業(yè)布置 1課本第5頁習(xí)題11復(fù)習(xí)鞏固第1、2、3題六、板書設(shè)計11正數(shù)和負(fù)數(shù) 第2課時 1、正數(shù) 負(fù)數(shù) 2、隨堂練習(xí)3、小結(jié)4、課后作業(yè)。七、課后反思1.1正數(shù)和負(fù)數(shù)第二課時 三維目標(biāo) 1知識與技能 進(jìn)一步鞏固正數(shù)、負(fù)數(shù)的概念;理解在同一個問題中,用正數(shù)與負(fù)數(shù)表示的量具有相同的意義2過程與方法 經(jīng)歷舉一反三用正、負(fù)數(shù)表示身邊具有相反意義的量,進(jìn)而發(fā)現(xiàn)它們的共同特征
6、3情感態(tài)度與價值觀 鼓勵學(xué)生積極思考,激發(fā)學(xué)生學(xué)習(xí)的興趣教學(xué)重、難點與關(guān)鍵 1重點:正確理解正、負(fù)數(shù)的概念,能應(yīng)用正數(shù)、負(fù)數(shù)表示生活中具有相反意義的量 2難點:正數(shù)、負(fù)數(shù)概念的綜合運(yùn)用3關(guān)鍵:通過對實例的進(jìn)一步分析,使學(xué)生認(rèn)識到正負(fù)數(shù)可以用來表示現(xiàn)實生活中具有相反意義的量教具準(zhǔn)備 班班通教學(xué)過程一、復(fù)習(xí)提問課堂引入 1什么叫正數(shù)?什么叫負(fù)數(shù)?舉例說明,有沒有既不是正數(shù)也不是負(fù)數(shù)的數(shù)?2如果用正數(shù)表示盈利5萬元,那么-8千元表示什么?二、新授 例1一個月內(nèi),小明體重增加2kg,小華體重減少1kg,小強(qiáng)體重?zé)o變化,寫出他們這個月的體重增長值 22001年下列國家的商品進(jìn)出口總額比上年的變化情況是:
7、 美國減少6.4%,德國增長1.3%,法國減少2.4%,英國減少3.5%,意大利增長0.2%,中國增長7.5% 寫出這些國家2001年商品進(jìn)出口總額的增長率 分析:在一個數(shù)前面添上負(fù)號,它表示的是與原數(shù)具有意義相反的數(shù)“負(fù)”與“正”是相對的,增長-1,就是減少1;增長-6.4%就是減少6.4%,那么什么情況下增長率是0?當(dāng)與上年持平,既不增又不減時增長率是0 解:1這個月小明體重增長2kg,小華體重增長-1kg,小強(qiáng)體重增長0kg 2六個國家2001年商品進(jìn)出口總額的增長率分別為: 美國-6.4%,德國1.3%,法國-2.4%,英國-3.5%,意大利0.2%,中國7.5% 歸納:在同一個問題中
8、,分別用正數(shù)與負(fù)數(shù)表示的量具有相反的意義,如盈利-2千元,就是虧本2千元;前進(jìn)-3米,就是后退3米;浪費(fèi)-14元,就是節(jié)約14元;向南走-7米,就是向北走7米,因此盈利2千元與盈利-2千元具有相反的意義三、鞏固練習(xí) 1課本第5頁的第8題 點撥:增長-3.4%,就是減少3.4%,所以這一年里這六國中中國、意大利的服務(wù)出口額增長了,美國、德國、英國、日本的服務(wù)出口額都減少了,意大利增長最多,日本減少最多 2補(bǔ)充練習(xí) 若向西走10米,記作-10米,如果一個人從A地先走12米,再走-15米,你能判斷此人這時在何處嗎?X k b 1 . c o m 解:向西走10米,記作-10米,那么這人走12米,則表
9、示向東走12米,再走-15米,表示向西走了15米,即這個人從A地先向東走12米,接著再向西走15米,此人這時應(yīng)該在A地的西方3米處四、課堂小結(jié) 通過本節(jié)課的學(xué)習(xí),你對正數(shù)、負(fù)數(shù)的概念是否有了進(jìn)一步理解?請你用正負(fù)數(shù)表示身邊具有相反數(shù)的量五、作業(yè)布置 1課本第5頁習(xí)題11第4、5、6、7題六、板書設(shè)計11正數(shù)和負(fù)數(shù)第2課時 1、復(fù)習(xí)鞏固,例題講解。2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。七、課后反思HYPERLINK http:/12 有理數(shù)第一課時 三維目標(biāo) 1、 知識與能力 理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會判別一個有理數(shù)是整數(shù)還是分?jǐn)?shù),是正數(shù)、負(fù)數(shù)還是零 2、過程與方法 經(jīng)歷對有
10、理數(shù)進(jìn)行分類的探索過程,初步感受分類討論的思想 3、情感態(tài)度與價值觀 通過對有理數(shù)的學(xué)習(xí),體會到數(shù)學(xué)與現(xiàn)實世界的緊密聯(lián)系教學(xué)重難點及突破 在引入了負(fù)數(shù)后,本課對所學(xué)過的數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概念分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí),使學(xué)生了解分類的思想并進(jìn)行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不宜過多展開 教學(xué)準(zhǔn)備 班班通 教學(xué)過程 一、課堂引入 1、我們把小學(xué)里學(xué)過的數(shù)歸納為整數(shù)與分?jǐn)?shù),引進(jìn)了負(fù)數(shù)以后,我們學(xué)過的數(shù)有哪些?將如
11、何歸類? 2舉例說明現(xiàn)實中具有相反意義的量 3如果由A地向南走3千米用3千米表示,那么-5千米表示什么意義? 4舉兩個例子說明+5與-5的區(qū)別 5數(shù)0表示的意義是什么? 二、自主探究 在學(xué)生討論的基礎(chǔ)上,引導(dǎo)學(xué)生自己進(jìn)行有理數(shù)的分類,我們學(xué)過的數(shù)就可以分為以下幾類: 正整數(shù),如1,2,3,; 零:0; 負(fù)整數(shù),如-1,-2,-3,; 正分?jǐn)?shù),如,4.5(即4); 負(fù)分?jǐn)?shù),如-,-2,-0.3(即-),- 正整數(shù)、零和負(fù)整數(shù)統(tǒng)稱整數(shù),正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù),整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù) 回答下列各題: (1)0是不是整數(shù)?0是不是有理數(shù)? (2)-5是不是整數(shù)?-5是不是有理數(shù)? (3)-0.3是不是負(fù)
12、分?jǐn)?shù)?-0.3是不是有理數(shù)? 2你能對以上各種數(shù)作出一張分類表嗎(要求不重復(fù)不遺漏)? 讓學(xué)生把自己作出的分類表進(jìn)行分類,可以根據(jù)不同需要,用不同的分類標(biāo)準(zhǔn),但必須對討論對象不重不漏地分類把一些數(shù)放在一起,就組成一個數(shù)的集合,簡稱數(shù)集所有的有理數(shù)組成的數(shù)集叫做有理數(shù)集類似的,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有正數(shù)組成的數(shù)集叫做正數(shù)集,所有負(fù)數(shù)組成的數(shù)集叫做負(fù)數(shù)集,如此等等 三、題例精解例 把下列各數(shù)填入表示它所在的數(shù)集的圈子里:-18,3.1416,0,2001,-,0.142857,95% 四、隨堂練習(xí) 一、判斷 1自然數(shù)是整數(shù) ( ) 2有理數(shù)包括正數(shù)和負(fù)數(shù)( ) 3有理數(shù)只有正數(shù)和負(fù)數(shù)(
13、 ) 4零是自然數(shù) ( ) 5正整數(shù)包括零和自然數(shù)( ) 6正整數(shù)是自然數(shù) ( ) 7任何分?jǐn)?shù)都是有理數(shù) ( ) 8沒有最大的有理數(shù) ( ) 9有最小的有理數(shù) ( ) 五、課堂小結(jié):(提問式) 1有理數(shù)按正、負(fù)數(shù),應(yīng)怎樣分類? 2有理數(shù)按整數(shù)、分?jǐn)?shù),應(yīng)怎樣分類? 3分類的原則是什么?六、課后作業(yè):1課本第14頁習(xí)題12第1題七、板書設(shè)計:HYPERLINK http:/12 有理數(shù)第一課時1、復(fù)習(xí)鞏固,例題講解。2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。八、課后反思1.2.2 數(shù)軸 第二課時 三維目標(biāo) 1知識與技能 (1)掌握數(shù)軸三要素,能正確地畫出數(shù)軸 (2)能準(zhǔn)備地將已知數(shù)在數(shù)軸上表示出來,能
14、說出數(shù)軸上已知點所表示的數(shù) 2、過程與方法 經(jīng)歷從實際問題中抽象出數(shù)學(xué)問題的過程,初步學(xué)會數(shù)學(xué)的類比方法和數(shù)形結(jié)合的思想方法 3、情感態(tài)度與價值觀 體會知識源于生活,并應(yīng)用于生活 教學(xué)重、難點與關(guān)鍵 1重點:理解數(shù)形結(jié)合的數(shù)學(xué)方法,掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù) 2難點:正確理解有理數(shù)和數(shù)軸上的點的對應(yīng)關(guān)系 3關(guān)鍵:掌握數(shù)形結(jié)合的數(shù)學(xué)方法 教具準(zhǔn)備 班班通 教學(xué)過程 一、復(fù)習(xí)提問、新課引入 1有理數(shù)包括哪些數(shù)?有理數(shù)是怎樣分類的? 2回顧小學(xué)數(shù)學(xué)是如何利用數(shù)軸表示正數(shù)和零的? 二、新授 引入負(fù)數(shù)后,又如何利用數(shù)軸表示有理數(shù)呢?讓我們先看一個問題 在一條東西走向的馬路上,有一個汽車站,汽車
15、站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境 1畫一條直線表示馬路,從左到右表示從西到東的方向2因為柳樹、楊樹都在汽車站的東面,即在汽車站的右邊槐樹、電線桿在汽車站的西面,即在汽車站的左邊,它們都相對汽車站而言,所以在直線上任取一個點O表示汽車站的位置,規(guī)定1個單位規(guī)定(線段OA的長代表1m長)(如下圖) 3分別標(biāo)出柳樹、楊樹、槐樹、電線桿的位置 在點O右邊,與O距離3個單位長度的點B表示柳樹的位置:點O右邊,與O點距離7.5個單位長度的點C表示楊樹的位置;點O左邊,與點O距離3個單位長度的點D表示槐樹位置;點O的左邊,與
16、點O距離4.8個單位長度的點E表示電線桿的位置 問:怎樣用數(shù)簡明地表示這些樹、電線桿與汽車站的相對位置關(guān)系?(方向、距離) 為了使表達(dá)更清楚、更簡潔,我們把點O左右兩邊的數(shù)分別用正數(shù)和正數(shù)表示符號表示方向,點O的左邊表示負(fù)數(shù),點O的右邊表示正數(shù) 這樣就可以簡明地表示這些樹、電線桿與汽車站的相對位置關(guān)系了 這里,-4.8中的負(fù)號“”表示汽車站(點O)的左邊,4.8表示與點O的距離為4.8個單位長度 說明:以上分析,教師應(yīng)邊講邊畫,分步進(jìn)行 觀察后回答:(課本第11頁)溫度計可以看作表示正數(shù)、0和負(fù)數(shù)的直線嗎?它和課本圖12-1有什么共同點,有什么不同點? 答:可以,課本圖12-2也是把正數(shù)、o和
17、負(fù)數(shù)用一條直線上的點表示出來,它是向上方向為正(即0的上方表示正數(shù),0的下方表示負(fù)數(shù)),只要把溫度計水平放下就與課本圖12-1相同了 一般地,在數(shù)學(xué)中人們用畫圖的方式把數(shù)“直觀化”,通常用一條直線上的點表示數(shù),這條直線叫做數(shù)軸,它滿足以下要求: (1)在直線上任取一個點表示數(shù)0,這個點叫做原點,記為0; (2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負(fù)方向; (3)選取適當(dāng)?shù)拈L度為單位長度,直線上從原點向右,每隔一個單位長度取一個點,依次表示1,2,3,;從原點向左,用類似方法依次表示-1,-2,-3, 像這樣規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸 原點、正方向和單位
18、長度稱為數(shù)軸的三要素,缺一不可 單位長度的大小可以根據(jù)不同的需要選擇任何一個有理數(shù)都可以用數(shù)軸上的點表示,例如3.5,數(shù)軸上從原點向右3.5個單位長度的點表示3.5,又如要表示-2,從原點向左2個單位長度的點就表示-2,如下圖 歸納:先由學(xué)生填空,然后教師加以講評 四、鞏固練習(xí) 1請同學(xué)們在練習(xí)本上畫一條數(shù)軸2下面的各圖是不是數(shù)軸?為什么? 3在數(shù)軸上畫出表示下列各數(shù)的點 (1)4,-2,-4,1,0,-2 (2)-100,100,-250,-400,0,2.54指出數(shù)軸上A、B、C、D、E各點分別表示什么數(shù)? 5在數(shù)軸上與表示-1的點的距離為2個單位長度的點有幾個?請你在數(shù)軸上把它們畫出來,
19、它們分別表示什么數(shù)? 學(xué)生獨(dú)立完成后,老師講解,給出正確的答案 五、課堂小結(jié) 數(shù)軸是非常重點的數(shù)學(xué)工具,它的出現(xiàn)對數(shù)學(xué)的發(fā)展起了重要作用,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,很多數(shù)學(xué)問題都可以以它為基礎(chǔ),借助圖直觀地表示,為研究問題提供了新方法 六、作業(yè)布置 1課本第10頁練習(xí)1、2題,第14頁習(xí)題12的第2題七、板書設(shè)計:1.2.2 數(shù)軸 第二課時1、像這樣規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸 原點、正方向和單位長度稱為數(shù)軸的三要素,缺一不可 單位長度的大小可以根據(jù)不同的需要選擇任何一個有理數(shù)都可以用數(shù)軸上的點表示,例如3.5,數(shù)軸上從原點向右3.5個單位長度的點表示3.5,又如要表示-2,
20、從原點向左2個單位長度的點就表示-2,如下圖2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。八、課后反思1.2.3 相反數(shù) 第三課時 三維目標(biāo) 1知識與技能 (1)借助數(shù)軸了解相反數(shù)的概念,知道兩個互為相反數(shù)的位置關(guān)系 (2)給出一個數(shù),能求出它的相反數(shù) 2、過程與方法 借助數(shù)軸,通過觀察特例,總結(jié)出相反數(shù)的概念從數(shù)和形兩個側(cè)面理解相反數(shù) 3、情感態(tài)度與價值觀 鼓勵學(xué)生積極進(jìn)行歸納、比較交流等活動 教學(xué) 重、難點與關(guān)鍵 1重點:理解相反數(shù)的意義,會求一個數(shù)的相反數(shù) 2難點:理解和掌握雙重符合的簡化 3關(guān)鍵:通過觀察特例,以及互為相反數(shù)的兩個數(shù)在數(shù)軸上的位置,理解相反數(shù) 教學(xué)過程 一、復(fù)習(xí)提問課堂引入 在
21、數(shù)軸上,畫出表示6,-6,2,-2,4,-4各數(shù)的點二、新授 請同學(xué)們觀察后回答: 1上述中6和-6;2和-2,4和-4每對數(shù)有什么特點? 2每對數(shù)在數(shù)軸上所表示的點有什么特點? 3再觀察課本第8頁的圖12-1中點D和點B,它們的位置關(guān)系如何?它們各表示的數(shù)有什么特點? 概括: (1)每一對數(shù),只有符號不同 (2)在數(shù)軸上表示每一對數(shù)的兩個點分別在原點的兩邊,并且離開原點的距離相等 (3)點D和點B分別位于原點的兩邊,且與原點的距離相等,它們分別表示-3和3 思考:數(shù)軸上與原點的距離是2的點有幾個?這些點表示的數(shù)是什么?與原點的距離是5的點呢? 歸納:一般地,設(shè)a是一個正數(shù),數(shù)軸上與原點的距離
22、是a的點有兩個,它們分別在原點左右,表示-a和a,那么稱這兩個點關(guān)于原點對稱,如下圖: 像這樣只有符號不同的兩個數(shù)叫做互為相反數(shù),例如6和-6,2和-2,都是互為相反數(shù),也就是說6的相反數(shù)是-6,-2的相反數(shù)是2 一般地,a和-a互為相反數(shù),特別地,0的相反數(shù)仍是0 問:數(shù)軸上表示相反數(shù)的兩個點和原點有什么關(guān)系? 答:數(shù)軸上表示相反數(shù)的兩個點是關(guān)于原點對稱,是在原點的兩旁(除0外),并且與原點的距離相等 注意相反數(shù)與倒數(shù)的區(qū)別,若兩個數(shù)只有符號不同,那么這兩個數(shù)叫做互為相反數(shù);若兩個數(shù)的乘積等于1,則這兩個數(shù)叫互為倒數(shù)任何有理數(shù)都有相反數(shù),零的相反數(shù)是零,而零沒有倒數(shù) 例1:分別寫出下列各數(shù)的
23、相反數(shù) 5,-7,-3,+11.2,0 解:5的相反數(shù)是-5;-7的相反數(shù)是7;-3的相反數(shù)是3;+11.2的相反數(shù)是-11.2;0的相反數(shù)是0 強(qiáng)調(diào)書寫格式,防止出現(xiàn)如“5=-5”的錯誤 容易看出,在正數(shù)前面添上“”號,就得到這個正數(shù)的相反數(shù)在任意一個數(shù)的前面添上“”號,新的數(shù)就表示原數(shù)的相反數(shù) 例如:-(+5)=-5,-(-7)=7,-(-3)=3,-(+11.2)=-11.2,-0=0 我們知道一個正數(shù),前面的“”號可以寫也可以不寫,所以在一個數(shù)的前面添上“”號,表示這個數(shù)沒有變化,還是它本身 例如:+(-4)=-4,+(+12)=12,+0=0 三、課堂練習(xí) 1寫出下列各數(shù)的相反數(shù) +
24、2,-2.5,0, 2化簡下列各數(shù) -(-30),-(+3),-(-38.2),+(-5),+(+) 3指出下列各對數(shù),哪些是相等的數(shù)?哪些是互為相反數(shù)? +(-3)與-3,-(+3)與3,-(-7)與-7 4如果a=-a,那么表示a的點在數(shù)軸上的什么位置? 5你會化簡下列各數(shù)嗎?試試看(本題可根據(jù)學(xué)生實際情況選用) -+(-2),-(-6) 提示: 因為任意數(shù)a是-a的相反數(shù),所以表示a的點在數(shù)軸上與表示-a的點關(guān)系原點對稱,這兩個點分別在原點左、右兩邊且與原點距離相等四、課堂小結(jié) 本節(jié)課我們學(xué)習(xí)了相反數(shù)的概念、相反數(shù)的求法和雙重符號的簡化理解相反數(shù)的意義,相反數(shù)總是一正一反成對出現(xiàn)(零除外
25、),從數(shù)軸上看,表示互為相反數(shù)的兩個點,分別在原點的兩邊,且到原點距離相等要表示一個數(shù)的相反數(shù),只要在這個數(shù)前面添“”號,-a表示a的相反數(shù),當(dāng)a是正數(shù)時,-a表示一個負(fù)數(shù);當(dāng)a是負(fù)數(shù)時,則-a表示正數(shù)此外我們還應(yīng)該注意相反數(shù)和倒數(shù)的區(qū)別 五、作業(yè)布置 1課本第11頁練習(xí)1、2、3題,第15頁習(xí)題12第3題六、板書設(shè)計:1.2.3 相反數(shù) 第三課時1、一般地,設(shè)a是一個正數(shù),數(shù)軸上與原點的距離是a的點有兩個,它們分別在原點左右,表示-a和a,那么稱這兩個點關(guān)于原點對稱,如下圖: 像這樣只有符號不同的兩個數(shù)叫做互為相反數(shù),例如6和-6,2和-2,都是互為相反數(shù),也就是說6的相反數(shù)是-6,-2的相
26、反數(shù)是22、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。七、課后反思1.2.4 絕對值第四課時三維目標(biāo) 1、知識與技能 (1)借助數(shù)軸初步理解絕對值的概念,能求一個數(shù)的絕對值 (2)通過應(yīng)用絕對值解決實際問題,體會絕對值的意義和作用 2、過程與方法 通過觀察實例及絕對值的幾何意義,探索一個數(shù)的絕對值與這個數(shù)之間的關(guān)系,培養(yǎng)學(xué)生語言描述能力 3、情感態(tài)度與價值觀 培養(yǎng)學(xué)生積極參與探索活動,體會數(shù)形結(jié)合的方法 教學(xué)重、難點與關(guān)鍵 1重點:正確理解絕對值的概念,能求一個數(shù)的絕對值 2難點:正確理解絕對值的幾何意義和代數(shù)意義 3關(guān)鍵:借助數(shù)軸理解絕對值的幾何意義,根據(jù)絕對值定義和相反數(shù)的概念,理解絕對值的代數(shù)意
27、義教學(xué)過程 一、復(fù)習(xí)提問,新課引入 1什么叫互為相反數(shù)? 2在數(shù)軸上表示互為相反數(shù)的兩個點和原點的位置關(guān)系怎樣? 二、新授 在一些量的計算中,有時并不注意其方向,例如,為了計算汽車行駛所耗的油量,起作用的是汽車行駛的路程而不是行駛的方向 1觀察課本第11頁圖12-5,回答: (1)兩輛汽車行駛的路線相同嗎? (2)它們行駛路程的遠(yuǎn)近相同嗎? 這兩輛車行駛的路線不同(方向相反),但行駛的路程的遠(yuǎn)近相同,都是10km 課本圖12-5中表示-10的點B和表示10的點A離開原點的距離都是10,我們就把這個距離10叫做數(shù)-10、10的絕對值 一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記作a
28、 這里的數(shù)a可以是正數(shù)、負(fù)數(shù)和0 例如上述的10和-10的絕對值記作10=10,-10=10,同樣在數(shù)軸上表示+6和-6的兩個點,離開原點的距離都是6,即6和-6的絕對值都是6,記作6=6,-6=6數(shù)軸上表示數(shù)0的點與原點的距離是0,所以0=0 2試一試: (1)+2=_,=_,+10.6=_ (2)0=_ (3)-12=_,-20.8=_,-32=_ 3你能從上面解答中發(fā)現(xiàn)什么規(guī)律嗎? 學(xué)生若有困難,教師可提示:所得的結(jié)果與絕對值符號內(nèi)的數(shù)有什么關(guān)系? 從而得出絕對值的代數(shù)意義: (1)一個正數(shù)的絕對值是它本身; (2)零的絕對值是零; (3)一個負(fù)數(shù)的絕對值是它的相反數(shù) 我們用a表示任意一
29、個有理數(shù),上述式子可以表示為: 當(dāng)a是正數(shù)時,a=_; 當(dāng)a是負(fù)數(shù)時,a=_; 當(dāng)a=0時,a=_ 以上先讓學(xué)生填空,然后讓學(xué)生給a取一些具體數(shù)值檢驗所填寫的結(jié)果是否正確 教師問: (1)任何一個有理數(shù)都有絕對值嗎?一個數(shù)的絕對值有幾個? (2)有沒有一個數(shù)的絕對值等于-2?任何一個數(shù)的絕對值一定是怎樣的數(shù)? (3)絕對值等于2的數(shù)有幾個?它們是什么? 歸納: 任何有理數(shù)都有唯一的絕對值,任意一個數(shù)的絕對值總是正數(shù)或0,不可能是負(fù)數(shù),即對任意有理數(shù)a,總有a0 兩個互為相反數(shù)的絕對值相等,即a=-a 因為0的絕對值是0,而0的相反數(shù)是它本身0,因此可知絕對值等于它本身的數(shù)是正數(shù)或者零,絕對值等
30、于它的相反數(shù)的數(shù)是負(fù)數(shù)或零 三、鞏固練習(xí) 1課本第12頁練習(xí)1、2題 第1題強(qiáng)調(diào)書寫格式,防止出現(xiàn)“-8=8”的錯誤 第2題(1)錯,如3與-2的符號相反,但它們不是互為相反數(shù),應(yīng)改為“只有大小相等符號相反的數(shù)是互為相反數(shù)”(2)正確(3)錯,因為這個點也可能越靠左,應(yīng)改為:“一個數(shù)的絕對值越大,表示它的點離原點越遠(yuǎn)”(4)正確 四、課堂小結(jié) 理解絕對值的幾何意義和代數(shù)意義從幾何意義可知,一個數(shù)的絕對值是表示該數(shù)的點與原點的距離,因為距離總是正數(shù)和零,所以有理數(shù)的絕對值不可能是負(fù)數(shù),從絕對值的代數(shù)定義也可進(jìn)一步理解這一點 引入絕對值概念后,有理數(shù)可以理解為由性質(zhì)符號和絕對值兩部分組成的,如-5
31、就是由“”號和它的絕對值5兩部分組成 五、作業(yè)布置 1課本第15頁習(xí)題12第4、7、10題六、板書設(shè)計:1.2.4 絕對值第四課時任何有理數(shù)都有唯一的絕對值,任意一個數(shù)的絕對值總是正數(shù)或0,不可能是負(fù)數(shù),即對任意有理數(shù)a,總有a0 兩個互為相反數(shù)的絕對值相等,即a=-a 因為0的絕對值是0,而0的相反數(shù)是它本身0,因此可知絕對值等于它本身的數(shù)是正數(shù)或者零,絕對值等于它的相反數(shù)的數(shù)是負(fù)數(shù)或零2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。七、課后反思1.2.4 絕對值第五課時 三維目標(biāo) 1、知識與技能 掌握有理數(shù)的大小比較的兩種方法利用數(shù)軸和絕對值 2、過程與方法 經(jīng)歷利用絕對值以及利用數(shù)軸比較有理數(shù)的大
32、小,進(jìn)一步體會“數(shù)形結(jié)合”的數(shù)學(xué)方法,培養(yǎng)學(xué)生分析、歸納的能力 3、情感態(tài)度與價值觀 會把所學(xué)知識運(yùn)用于解決實際問題,體會數(shù)學(xué)知識的應(yīng)用價值 教學(xué)重難點與關(guān)鍵 1重點:會利用絕對值比較有理數(shù)的大小 2難點:兩個負(fù)數(shù)的大小比較 3關(guān)鍵:正確理解絕對值的概念 教學(xué)過程 一、復(fù)習(xí)提問,引入新課 用“”、“”號填空 15.7_6.3; 2_; 30.03_0; 4-3_2; 5-_- 二、新授 引入負(fù)數(shù)后,如何比較兩個有理數(shù)的大小呢?讓我們從熟悉的溫度來比較,大家觀察課本第12頁中“未來一周天氣預(yù)報” 1課本圖12-6中共有14個溫度,其中最低的是多少?最高的是多少? 2請你將這14個溫度按從低到高的
33、順序排列 課本圖12-6中的14個溫度按從低到高排列為: -4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 按照這個順序排列的溫度,在溫度計上所對應(yīng)的點是從下到上的,按照這個順序把這些數(shù)表示在數(shù)軸上,表示它們的各點的順序是從左到右的,如課本圖12-7,這就是說在數(shù)軸上表示有理數(shù),它們從左到右的順序,就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù),因此,我們可以利用數(shù)軸比較有理數(shù)的大小 例如在數(shù)軸上表示-6的點在表示-5的點的左邊,所以-6-5 同樣-5-4,-3-3,-20,-11, 從數(shù)軸上可知: 表示正數(shù)的點都在原點的右邊;表示負(fù)數(shù)的點都在原點左邊 因此有正數(shù)大小0,0大于負(fù)數(shù),
34、正數(shù)大于負(fù)數(shù) 兩個正數(shù)的大小比較小學(xué)已學(xué)過,不畫數(shù)軸你會比較兩個負(fù)數(shù)的大小嗎? 探索: 我們知道,在數(shù)軸上越靠左邊的點所表示的數(shù)越小,而這個點與原點的距離越大,即這個點所表示的數(shù)的絕對值越大,因此,我們還可以利用絕對值比較兩個負(fù)數(shù)的大小 即兩個負(fù)數(shù),絕對值大的反而小 例如:-2=2,-5=5,即-2-5 同樣-1-3 例1:比較下列各對數(shù)的大小: (1)-(-1)和-(+2); (2)-和-; (3)-(-0.3)和- 解:(1)先化簡,-(-1)=1,-(+2)=-2, 正數(shù)大于負(fù)數(shù),1-2 即 -(-1)-(+2) (2)這是兩個負(fù)數(shù)比較大小,要比較它們的絕對值,絕對值大的反而小 -=,-
35、= 因為,即- (3)先化簡,-(-0.3)=0.3,-=, 0.30.3,即-(-0.3)0,ba,比較a,-a,b,-b的大小 解:方法一,可通過數(shù)軸來比較大小,先在數(shù)軸上找出a,-a,b,-b的大致位置,再比較由a0,ba,可知表示b的點離開原點的距離更遠(yuǎn),即它應(yīng)在表示a的點的左邊,然后再根據(jù)兩個互為相反數(shù)在數(shù)軸上所表示的點在原點兩邊,且與原點距離相等即可得到下圖 根據(jù)數(shù)軸上,較左邊的點所表示的數(shù)較小,可得: b-aa-b 三、課堂練習(xí) 1課本第14頁練習(xí) 2補(bǔ)充練習(xí): (1)比較大小,并用“”或“-7 四、課堂小結(jié) 引進(jìn)負(fù)數(shù)后,任意兩個有理數(shù)都可以求出它們的差,結(jié)果可能為正數(shù)(大數(shù)減去
36、小數(shù)),也可能為負(fù)數(shù)(小數(shù)減去大數(shù)),還可能為0(相等的兩數(shù)相減),學(xué)習(xí)有理數(shù)減法,關(guān)鍵在于處理好兩個“變”字;(1)改變運(yùn)算符號即把減法轉(zhuǎn)化為加法(2)改變減數(shù)的符號即減數(shù)變?yōu)樗南喾磾?shù),這兩個“變”要同時進(jìn)行,而被減數(shù)不變 五、作業(yè)布置 1課本第25頁至第26頁,習(xí)題13第3、4、11、12題六、板書設(shè)計:1.3.2 有理數(shù)的減法(1)第三課時1、有理數(shù)的減法可以轉(zhuǎn)化為加法來進(jìn)行“相反數(shù)”是轉(zhuǎn)化的橋梁 有理數(shù)減法法則: 減去一個數(shù),等于加上這個數(shù)的相反數(shù) 用式子表示為:a-b=a+(-b)2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。七、課后反思1.3.2 有理數(shù)的減法(2)第四課時 三維目標(biāo) 1
37、、知識與技能 理解有理數(shù)加減法可以互相轉(zhuǎn)化,能把有理數(shù)加減混合運(yùn)算統(tǒng)一為加法運(yùn)算,靈活應(yīng)用運(yùn)算律進(jìn)行計算 2、過程與方法 經(jīng)歷綜合運(yùn)用有理數(shù)加減法解決實際問題的過程,培養(yǎng)學(xué)生分析問題解決問題的能力 3、情感態(tài)度與價值觀 體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣 教學(xué)重點、難點與關(guān)鍵 1重點:有理數(shù)HYPERLINK http:/加減法統(tǒng)一為加法運(yùn)算,掌握有理數(shù)加減混合運(yùn)算 2難點:省略括號和加號的加法算式的運(yùn)算方法 3關(guān)鍵:理解加減混合運(yùn)算可以統(tǒng)一成加法,以及正確理解省略加號的有理數(shù)加法形式 教具準(zhǔn)備 班班通教學(xué)過程 一、復(fù)習(xí)提問,引入新課 1敘述有理數(shù)的加法、減法法則 2計算 (1)
38、(-8)+(-6); (2)(-8)-(-6); (3)8-(-6); (4)(-8)-6; (5)5-14 二、新授 我們已學(xué)習(xí)了有理數(shù)加、減法的運(yùn)算,今天我們來研究怎樣進(jìn)行有理數(shù)的加減混合運(yùn)算 例6:計算:(-20)+(+3)-(-5)-(+7) 分析:這個式子中有加法HYPERLINK http:/,也有減法,可以按照運(yùn)算順序,從左到右逐一加以計算也可以用有理數(shù)的減法法則,則它改寫為(-20)+(+3)+(+5)+(-7)使問題轉(zhuǎn)化為幾個有理數(shù)的加法 解:(-20)+(+3)-(-5)-(+7) =(-20)+(+3)+(+5)+(-7) =(-20)+(-7)+(+3)+(+5) =-
39、27+(+8) =-19 把有理數(shù)加減混合運(yùn)算轉(zhuǎn)化為加法后,常用加法交換律和結(jié)合律使計算簡便 歸納:加減混合運(yùn)算可以統(tǒng)一為加法運(yùn)算 用式子表示為a+b-c=a+b+(-c) 式子(-20)+(+3)+(+5)+(-7)是-20,+3,+5,-7這四個數(shù)的和,為了書寫簡單,可以省略式子中的括號和加號,把它寫為:-20+3+5-7 這個式子讀作“負(fù)20、正3、正5、負(fù)7的和”或讀作“負(fù)20加3加5減7” 例6的運(yùn)算過程也可簡寫為: (-20)+(+3)-(-5)-(+7) =(-20)+(+3)+(+5)+(-7) (加減法統(tǒng)一為加法) =-20+3+5-7 (省略式子中的括號和括號前面的加號)
40、=-20-7+3+5 (加法HYPERLINK http:/交換律交換時,要連同符號一起交換) =-19 (異號兩數(shù)相減) 三、鞏固練習(xí) 1課本第24頁練習(xí) (1)題是已寫成省略加號的代數(shù)和,可運(yùn)用加法交換律、結(jié)合律 原式=1+3-4-0.5=0-0.5=-0.5 (2)題運(yùn)用加減混合運(yùn)算律,同號結(jié)合 原式=-2.4-4.6+3.5+3.5=-7+7=0 (3)題先把加減混合運(yùn)算統(tǒng)一為加法運(yùn)算 原式=(-7)+(-5)+(-4)+(+10) =-7-5-4+10 (省略括號和加號) =-16+10 =-6 四、課堂小結(jié) 有理數(shù)加減混合運(yùn)算通常統(tǒng)一成加法運(yùn)算,運(yùn)算時常用交換律和結(jié)合律使計算簡便,
41、一般情況采用:(1)凡相加是整數(shù)的,可以先加;(2)分母相同或易于通分的分?jǐn)?shù)相結(jié)合;(3)有互為相反數(shù)可以互相抵消的,先相加;(4)正、負(fù)數(shù)分別相加總之要認(rèn)真觀察,靈活運(yùn)用運(yùn)算律 五、作業(yè)布置 1課本第25頁第26頁習(xí)題13第5、6、13題六、板書設(shè)計:1.3.2 有理數(shù)的減法(2)第四課時1、把有理數(shù)加減混合運(yùn)算轉(zhuǎn)化為加法后,常用加法交換律和結(jié)合律使計算簡便 歸納:加減混合運(yùn)算可以統(tǒng)一為加法運(yùn)算 用式子表示為a+b-c=a+b+(-c)2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。七、課后反思1.4.1 有理數(shù)的乘法(1) 第一課時 三維目標(biāo) 1、知識與技能 經(jīng)歷探索有理數(shù)乘法法則HYPERLINK
42、 http:/過程,掌握有理數(shù)的乘法法則,能用法則進(jìn)行有理數(shù)的乘法 2、過程與方法 經(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展學(xué)生歸納、猜想、驗證等能力 3、情感態(tài)度與價值觀 培養(yǎng)學(xué)生積極探索精神,感受數(shù)學(xué)與實際生活的聯(lián)系 教學(xué)重、難點與關(guān)鍵 1重點:應(yīng)用法則正確地進(jìn)行有理數(shù)乘法運(yùn)算 2難點:兩負(fù)數(shù)相乘,積的符號為正與兩負(fù)數(shù)相加和的符號為負(fù)號容易混淆 3關(guān)鍵:積的符號的確定 教具準(zhǔn)備 班班通 教學(xué)過程 1、引入新課 在小學(xué),我們學(xué)習(xí)了正有理數(shù)有零的乘法運(yùn)算,引入負(fù)數(shù)后,怎樣進(jìn)行有理數(shù)的乘法運(yùn)算呢? 2、新授課本第28頁圖14-1,一只蝸牛沿直線L爬行,它現(xiàn)在的位置恰在L上的點O (1)如果蝸牛一直以每
43、分2cm的速度向右爬行,3分后它在什么位置? (2)如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置? (3)如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置? (4)如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置? 分析:以上4個問題涉及2組相反意義的量:向右和向左爬行,3分鐘后與3分鐘前,為了區(qū)分方向,我們規(guī)定:向左為負(fù),向右為正;為區(qū)分時間,我們規(guī)定:現(xiàn)在前為負(fù),現(xiàn)在后為正,那么(1)中“2cm”記作“+2cm”,“3分后”記作“+3分”(1)3分后蝸牛應(yīng)在L上點O右邊6cm處(如課本圖14-2) 這可以表示為 (+2)(+3)=+6 (2)3分后蝸牛應(yīng)在
44、L上點O左邊6cm處(如課本圖14-3) 這可以表示為 (-2)(+3)=-6 (3)3分前蝸牛應(yīng)在L上點O左邊6cm處(如課本圖14-4) 講問題(3)時可采用提問式:已知現(xiàn)在蝸牛在點O處,而蝸牛是一直向右爬行的,那么3分前蝸牛應(yīng)在什么位置? 這可以表示為(+2)(-3)=-6 (4)蝸牛是向左爬行的,現(xiàn)在在O點,所以3分前蝸牛應(yīng)在L上點O右邊6cm處(如課本圖14-5) 這可以表示為(-2)(-3)=+6 觀察,根據(jù)你對有理HYPERLINK http:/數(shù)乘法的思考,完成課本第39頁填空 歸納: 兩個有理數(shù)相乘,積仍然由符號和絕對值兩部分組成,、式都是同號兩數(shù)相乘,積為正,、式是異號兩數(shù)
45、相乘,積為負(fù),式中的積的絕對值都是這兩個因數(shù)絕對值的積 也就是兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘 此外,我們知道20=0,那么(-2)0=? 顯然(-2)0=0 這就是說:任何數(shù)同0相乘,都得0 綜上所述,得有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘,任何數(shù)同0相乘,都得0 進(jìn)行有理數(shù)的乘法運(yùn)算,關(guān)鍵是積的符號的確定,計算時分為兩步進(jìn)行:第一步是確定積的符號,在確定積的符號HYPERLINK http:/時要準(zhǔn)確運(yùn)用法則;第二步是求絕對值的積 如:(-5)(-3),(同號兩數(shù)相乘) (-5)(-3)=+( ),得正 53=15,把絕對值相乘 所以 (-5)(-3)=
46、15 又如:(-7)4_ (-7)4=-( ),_ 74=28,_ 所以 (-7)4=-28 例1:計算: (1)(-3)9; (2)(-)(-2); (3)0(-53)(+253); (4)1(-1) 例1可以由學(xué)生自HYPERLINK http:/己完成,計算時,按判定類型、確定積的符號,求積的絕對值(3)題直接得0(4)題化帶分?jǐn)?shù)為假分?jǐn)?shù),以便約分 小學(xué)里,兩數(shù)乘積為1,這兩個數(shù)叫互為倒數(shù) 在有理數(shù)中仍然有:乘積是1的兩數(shù)互為倒數(shù) 例如:-與-2是互為倒數(shù),-與-是互為倒數(shù) 注意倒數(shù)與相反數(shù)的區(qū)別:兩數(shù)互為倒數(shù),積為1,它們一定同號;兩數(shù)互為相反數(shù),和為零,它們是異號(0除外),另外0沒
47、有倒數(shù),而0的相反數(shù)為0 數(shù)a(a0)的倒數(shù)是什么? 1除以一個數(shù)(0除外)得這個數(shù)的倒數(shù),所以a(a0)的倒數(shù)為 例2:用正負(fù)數(shù)表示氣溫的變化量,上升為正,下降為負(fù),登山隊攀登一座山峰,每登高1km氣溫的變化量為-6,攀登3km后,氣溫有什么變化? 解:本題是關(guān)于HYPERLINK http:/有理數(shù)的乘法問題,根據(jù)題意, (-6)3=-18 由于規(guī)定下降為負(fù),所以氣溫下降18三、鞏固練習(xí) 課本第30頁練習(xí) 1第2題:降5元記為-5元,那么-560=-300(元) 與按原價銷售的60件商品相比,銷售額減少了300元 2第3題:1和-1的倒數(shù)分別是它們的本身;,-的倒數(shù)分別為3,-3;5,-5
48、的倒數(shù)分別為,-;,-的倒數(shù)分別是,-;此外,1與-1,與-,5與-5,與-是互為相反數(shù) 四、課堂小結(jié) 1強(qiáng)調(diào)運(yùn)用法則進(jìn)行有理數(shù)乘法的步驟 2比較有理數(shù)乘法的符號法則與有理數(shù)加法的符號法則的區(qū)別,以達(dá)到進(jìn)一步鞏固有理數(shù)乘法法則的目的 五、作業(yè)布置 1課本第38頁習(xí)題14第1、2、3題六、板書設(shè)計:1.4.1 有理數(shù)的乘法(1) 第一課時1、兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘,任何數(shù)同0相乘,都得02、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。七、課后反思1.4.1 有理數(shù)的乘法(2)第二課時 三維目標(biāo) 1、知識與技能 (1)能確定多個因數(shù)相乘時,積的符號,并能用法則進(jìn)行多個因數(shù)的乘積運(yùn)算 (
49、2)能利用計算器進(jìn)行有理數(shù)的乘法運(yùn)算 2、過程與方法 經(jīng)歷探索幾個不HYPERLINK http:/為0的數(shù)相乘,積的符號問題的過程,發(fā)展觀察、歸納驗證等能力3、情感態(tài)度與價值觀 培養(yǎng)學(xué)生主動探索,積極思考的學(xué)習(xí)興趣 教學(xué)重、難點與關(guān)鍵 1重點:能用法則進(jìn)行多個因數(shù)的乘積運(yùn)算 2難點:積的符號的確定 3關(guān)鍵:讓學(xué)生觀察實例,發(fā)現(xiàn)規(guī)律 教具準(zhǔn)備 班班通教學(xué)過程一、復(fù)習(xí)引導(dǎo)1請敘述有理數(shù)的乘法法則 2計算:(1)-5(-2); (2)(-)(-9); (3)0(-999) 二、新授 1多個有理數(shù)相乘,可以把它們按順序依次相乘 例如:計算:1(-1)(-7)=-(-7)=-2(-7)=14; 又如:
50、(+2)(-78)=(+2)(-26)=-52 我們知道計算有理數(shù)的乘法,關(guān)鍵是確定積的符號 觀察:下列各式的積是正的還是負(fù)的? (1)234(-5); (2)234(-4)(-5); (3)2(-3)(-4)(-5);(4)(-2)(-3)(-4)(-5) 易得出:(1)、(3)式積為負(fù),(2)、(4)式積為正,積的符號與負(fù)因數(shù)的個數(shù)有關(guān) 教師問:幾個不是0的數(shù)相乘,積的符號與負(fù)因數(shù)的個數(shù)之間有什么關(guān)系? 學(xué)生完成思考后,教師指出:幾個不是0的數(shù)相HYPERLINK http:/乘,積的符號由負(fù)因數(shù)的個數(shù)決定,與正因數(shù)的個數(shù)無關(guān),當(dāng)負(fù)因數(shù)的個數(shù)為負(fù)數(shù)時,積為負(fù)數(shù);當(dāng)負(fù)因數(shù)的個數(shù)為偶數(shù)時,積為
51、正數(shù) 2多個不是0的有理數(shù)相乘,先由負(fù)因數(shù)的個數(shù)確定積的符號再求各個絕對值的積 例3:計算: (1)(-3)(-)(-); (2)(-5)6(-) 解:(1)(負(fù)因數(shù)的個數(shù)為奇數(shù)3,因此積為負(fù)) 原式=-3 =- (2)(負(fù)因數(shù)的個數(shù)是偶數(shù)2,所以積為正) 原式=56=6 觀察下式,你能看出它的結(jié)果嗎?如果能,說明理由? 7.8(-5.1)0(-19.6) 歸納:幾個數(shù)相乘,如果其中有因數(shù)為0,積等于0,這是因為任何數(shù)同0相乘,都得0 三、課堂練習(xí) 課本第32頁練習(xí) 思路點撥:先觀察題目是什么類型,然后按有理數(shù)的乘法法則進(jìn)行,(1)、(2)題都是多個不是0的數(shù)相乘,要先確定積的符號,再求積的絕
52、對值,(3)題是幾個數(shù)相乘,且其中有一個因數(shù)為0,所以直接得結(jié)果0 四、課堂小結(jié) HYPERLINK http:/ 本節(jié)課我們通過觀察實例,歸納出幾個不等于零的數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)確定,當(dāng)負(fù)因數(shù)的個數(shù)為奇數(shù)時,積為負(fù);當(dāng)負(fù)因數(shù)的個數(shù)為偶數(shù)時,積為正;幾個不等于零的數(shù)相乘,先確定積的符號,再把各個數(shù)的絕對值相乘;幾個數(shù)相乘,有一個因數(shù)是0,積就為零 五、作業(yè)布置 1課本第38頁習(xí)題14第7題第(1)、(2)、(3)題六、板書設(shè)計:1.4.1 有理數(shù)的乘法(2)第二課時1、幾個不是0的數(shù)相HYPERLINK http:/乘,積的符號由負(fù)因數(shù)的個數(shù)決定,與正因數(shù)的個數(shù)無關(guān),當(dāng)負(fù)因數(shù)的個數(shù)為
53、負(fù)數(shù)時,積為負(fù)數(shù);當(dāng)負(fù)因數(shù)的個數(shù)為偶數(shù)時,積為正數(shù)2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。七、課后反思1.4.1 有理數(shù)的乘法(3)第三課時 三維目標(biāo) 1、知識與技能 (1)能用乘法的三個運(yùn)算律來進(jìn)行乘法的簡化運(yùn)算 (2)能進(jìn)行乘法及加減法的混合運(yùn)算 2、過程與方法 經(jīng)歷探索有理數(shù)乘法運(yùn)算HYPERLINK http:/律的過程,發(fā)展學(xué)生觀察、歸納、驗證等能力 3、情感態(tài)度與價值觀 鼓勵學(xué)生積極思考,并與同伴進(jìn)行交流的思想,體會運(yùn)算律對簡化運(yùn)算的作用 教學(xué)重、難點與關(guān)鍵 1重點:能運(yùn)用乘法運(yùn)算律進(jìn)行乘法運(yùn)算 2難點:靈活運(yùn)用運(yùn)算律進(jìn)行乘法運(yùn)算 3關(guān)鍵:掌握乘法運(yùn)算律以及運(yùn)算法則教學(xué)過程 一、復(fù)習(xí)
54、引入 1有理數(shù)的乘法法則是什么? 2在小學(xué)里學(xué)過正有理數(shù)乘法有哪些運(yùn)算律? 二、新授 在小學(xué)里,數(shù)的乘法滿足交換律,例如83=38 還滿足結(jié)合律,例如(46)3=4(63) 引入負(fù)數(shù)后,乘法交換律、結(jié)合律是否還成立? 規(guī)定有理數(shù)乘法法則后,顯然乘法交換律、結(jié)合律仍然成立 例如:5(-6)=-30,(-6)5=-30 即 5(-6)=(-6)5 3(-4)(-5)=(-12)(-5)=60 3(-4)(-5)=3(+20)=60 即 3(-4)(-5)=3(-4)(-5) 大家可以再任意取一些數(shù),試一試 一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等 乘法交換律:ab=ba 說明:ab
55、可以寫成ab或ab當(dāng)用字母表示乘法時“”號可寫成“”或省略 三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等 乘法結(jié)合律:(ab)c=a(bc) 在小學(xué)里,乘法還滿足分配律,例如6(+)=6+6任意選取三個有理數(shù)(至少有一個負(fù)數(shù))分別填入下列、和內(nèi),并比較兩個運(yùn)算結(jié)果,你能發(fā)現(xiàn)什么? 所以:-5+(-2)=-5+(-5)(-2) 這就是說,有理數(shù)的乘法仍滿足分配律 一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加 分配律:a(b+c)=ab+ac 以上表示乘法運(yùn)算律的式子中,a、b、c表示任意有理數(shù) 乘法的運(yùn)算律與加法運(yùn)算律類似,也可以推廣到多個數(shù)的情況 在
56、代數(shù)學(xué)的研究中,運(yùn)算律是很重要的內(nèi)容在計算時運(yùn)用運(yùn)算律,往往能使計算簡便 例4:用兩種方法計算()12 解法1:按運(yùn)算順序,先計算小括號內(nèi)的數(shù) ()12 =()12 =-12=-1 解法2:運(yùn)用分配律 ()12 =12+12-12 =3+2-6=-1 思考:比較以上兩種方法,哪種解法運(yùn)算量??? 顯然解法2運(yùn)算量小,它不需要通分 三、課堂練習(xí) 1課本第33頁練習(xí) (1)-8500,運(yùn)用結(jié)合律,先算(-25)(-4) (2)15,運(yùn)用乘法交換律和結(jié)合律 (3)25,運(yùn)用分配律 四、課堂小結(jié) 運(yùn)算律的運(yùn)用十分靈活,在有理數(shù)的混合運(yùn)算中,各種運(yùn)算律常常是混合運(yùn)用的,這就要求我們要有較好的掌握運(yùn)算律進(jìn)行
57、計算的能力,在平時的練習(xí)中,要觀察題目特點,尋找最佳解題方法,這樣往往可以減少計算量五、作業(yè)布置 1課本第39頁,習(xí)題14第7題第(1)、(2)、(3)小題六、板書設(shè)計:1.4.1 有理數(shù)的乘法(3)第三課時1、一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等2、一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加3、隨堂練習(xí)。4、小結(jié)。5、課后作業(yè)。七、課后反思HYPERLINK http:/1.4.2 有理數(shù)的除法(1)第四課時 三維目標(biāo) 1、知識與技能 掌握有理數(shù)除法法HYPERLINK http:/則,會進(jìn)行有理數(shù)的除法運(yùn)算以及分?jǐn)?shù)的化簡2、過程與方法 通
58、過學(xué)習(xí)有理數(shù)除法法則,體會轉(zhuǎn)化思想,會將乘除混合運(yùn)算統(tǒng)一為乘法運(yùn)算 3、情感態(tài)度與價值觀 培養(yǎng)學(xué)生勇于探索積極思考的良好學(xué)習(xí)習(xí)慣 教學(xué)重、難點與關(guān)鍵 1重點:正確應(yīng)用法則進(jìn)行有理數(shù)的除法運(yùn)算 2難點:靈活運(yùn)用有理數(shù)除法的兩種法則 3關(guān)鍵:會將有理數(shù)的除法轉(zhuǎn)化為乘法教學(xué)過程一、課堂引入 1小學(xué)里,除法的意義是什么?它與乘法有什么關(guān)系? 已知兩數(shù)的積與一個因數(shù),求另一個因數(shù)。用除法,乘法與除法互為逆運(yùn)算除以一個數(shù)等于乘以這個數(shù)的倒數(shù) 2求下列各數(shù)的倒數(shù): (1)-; (2)-0.125; (3)-1 二、新授 HYPERLINK / w w w .x k b 1.c o m 引入負(fù)數(shù)后,如何計算有
59、理數(shù)的除法呢? 例如8(-4) 根據(jù)除法意義,這就是要求一個數(shù),使它與-4相乘得8 因為 (-2)(-4)=8 所以 8(-4)=-2 另外,我們知道,8(-)=-2 由、得 8(-4)=8(-) 式表明,一個數(shù)除以-4可以轉(zhuǎn)化為乘以-來進(jìn)行,即一個數(shù)除以-4,等于乘以-4的倒數(shù)- 探索:換其他數(shù)的除法進(jìn)行類似討論,是否仍有除以a(a0)可以轉(zhuǎn)化為乘以呢?例如(-10)(-4) 從而得出有理數(shù)除法法則: 除以一個不等于0的數(shù),等于乘以這個數(shù)的倒數(shù) 這個法則也可以表示成: ab=a(b0),其中a、b表示任意有理數(shù)(b0)例如: 兩數(shù)相除的商仍有符號和絕對值兩部分組成,由于除法可轉(zhuǎn)化為乘法,因此
60、商的符號確定與有理數(shù)乘法類似,你能否得到與有理數(shù)乘法法則類似的除法法則嗎? 兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除 零除以任何一個不等于零的數(shù),都得零 這是有理數(shù)除法法則的另一種說法,具體采用哪一種方法,靈活選用 例5:計算:(1)(-36)9;(2)(-)(-) 分析:(1)題,36能被9整除,可以用方法二,直接除;(2)題是分?jǐn)?shù)除法,可轉(zhuǎn)化為乘法 解:(1)(-36)9=-(369)=-4(先確定符號,再求絕對值); (2)(-)(-)=(-)(-)= 例6:化簡下列分?jǐn)?shù): (1); (2) 分析:分?jǐn)?shù)可以理解為除法,所以要按除法法則進(jìn)行,可以直接除,也可以轉(zhuǎn)化為乘法,利用乘法的運(yùn)算
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 儀器檢定合同范本
- 廠房征用合同范本
- 代還合同范本
- 加工方加工合同范本
- ktv公關(guān)合同范本
- 與作家合作合同范本
- 醫(yī)保托管合同范本
- 出租垂釣大棚合同范本
- 鄉(xiāng)鎮(zhèn)家具采購合同范本
- 可以合伙人合同范本
- 人工智能對輿情管理的價值
- 地理-河南省部分重點高中九師聯(lián)盟2024-2025學(xué)年高三下學(xué)期2月開學(xué)考試試題和答案
- 老年護(hù)理相關(guān)法律法規(guī)
- 《陶瓷工藝技術(shù)》課件
- 變更強(qiáng)制措施的申請書
- 供電所安全演講
- 供應(yīng)鏈韌性提升與風(fēng)險防范-深度研究
- 化工原理完整(天大版)課件
- 《淞滬會戰(zhàn)》課件
- 《智能制造技術(shù)基礎(chǔ)》課件-第4章 加工過程的智能監(jiān)測與控制
- 罪犯正常死亡報告范文
評論
0/150
提交評論