2022年北京市十一所學(xué)校高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第1頁
2022年北京市十一所學(xué)校高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第2頁
2022年北京市十一所學(xué)校高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第3頁
2022年北京市十一所學(xué)校高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第4頁
2022年北京市十一所學(xué)校高三下學(xué)期一模考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1直角坐標(biāo)系中,雙曲線()與拋物線相交于、兩點(diǎn),若是等邊三角形,則該雙曲線的離心率( )ABCD2某地區(qū)高考改革,實(shí)行“3+2+1”模式,即“3”指語文、數(shù)學(xué)、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學(xué)、生物、政治

2、、地理以及除了必選一門以外的歷史或物理這五門學(xué)科中任意選擇兩門學(xué)科,則一名學(xué)生的不同選科組合有()A8種B12種C16種D20種3如圖,在中,且,則( )A1BCD4兩圓和相外切,且,則的最大值為( )AB9CD15在三角形中,求( )ABCD6若是第二象限角且sin =,則=ABCD7已知數(shù)列的前n項(xiàng)和為,且對于任意,滿足,則( )ABCD8在正方體中,點(diǎn)、分別為、的中點(diǎn),過點(diǎn)作平面使平面,平面若直線平面,則的值為( )ABCD9在區(qū)間上隨機(jī)取一個實(shí)數(shù),使直線與圓相交的概率為( )ABCD10二項(xiàng)式的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中的常數(shù)項(xiàng)是( )A180B90C45D3601

3、1已知直線,則“”是“”的A充分不必要條件B必要不充分條件C充分必要條件D既不充分也不必要條件12設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是Ay與x具有正的線性相關(guān)關(guān)系B回歸直線過樣本點(diǎn)的中心(,)C若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg二、填空題:本題共4小題,每小題5分,共20分。13若實(shí)數(shù)滿足不等式組,則的最小值是_14如圖,在三棱錐ABCD中,點(diǎn)E

4、在BD上,EAEBECED,BDCD,ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(不含端點(diǎn)),且AMCN,則當(dāng)四面體CEMN的體積取得最大值時,三棱錐ABCD的外接球的表面積為_.15已知函數(shù)在定義域R上的導(dǎo)函數(shù)為,若函數(shù)沒有零點(diǎn),且,當(dāng)在上與在R上的單調(diào)性相同時,則實(shí)數(shù)k的取值范圍是_.16若函數(shù)在和上均單調(diào)遞增,則實(shí)數(shù)的取值范圍為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),(1)若,求實(shí)數(shù)的值(2)若,求正實(shí)數(shù)的取值范圍18(12分)在平面直角坐標(biāo)系xoy中,曲線C的方程為.以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程

5、為.(1)寫出曲線C的極坐標(biāo)方程,并求出直線l與曲線C的交點(diǎn)M,N的極坐標(biāo);(2)設(shè)P是橢圓上的動點(diǎn),求面積的最大值.19(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.20(12分)在平面直角坐標(biāo)系中,且滿足(1)求點(diǎn)的軌跡的方程;(2)過,作直線交軌跡于,兩點(diǎn),若的面積是面積的2倍,求直線的方程21(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點(diǎn).(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.22(10分)

6、已知函數(shù).(1)當(dāng)時,求函數(shù)的值域.(2)設(shè)函數(shù),若,且的最小值為,求實(shí)數(shù)的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】根據(jù)題干得到點(diǎn)A坐標(biāo)為,代入拋物線得到坐標(biāo)為,再將點(diǎn)代入雙曲線得到離心率.【詳解】因?yàn)槿切蜲AB是等邊三角形,設(shè)直線OA為,設(shè)點(diǎn)A坐標(biāo)為,代入拋物線得到x=2b,故點(diǎn)A的坐標(biāo)為,代入雙曲線得到 故答案為:D.【點(diǎn)睛】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方

7、程(不等式),解方程(不等式)即可得 (的取值范圍).2C【解析】分兩類進(jìn)行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應(yīng)的組合數(shù),即可求出結(jié)果.【詳解】若一名學(xué)生只選物理和歷史中的一門,則有種組合;若一名學(xué)生物理和歷史都選,則有種組合;因此共有種組合.故選C【點(diǎn)睛】本題主要考查兩個計(jì)數(shù)原理,熟記其計(jì)數(shù)原理的概念,即可求出結(jié)果,屬于常考題型.3C【解析】由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點(diǎn)共線,又得到一個關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點(diǎn)睛】此題考查的是平面向量基本定理的有關(guān)知識,結(jié)合圖形尋找各向量間的關(guān)系,屬于

8、中檔題.4A【解析】由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因?yàn)閮蓤A和相外切所以,即當(dāng)時,取最大值故選:A【點(diǎn)睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.5A【解析】利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,.由正弦定理得.故選:A.【點(diǎn)睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.6B【解析】由是第二象限角且sin =知:,所以7D【解析】利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項(xiàng)公式,然后求解數(shù)列的和,判斷選項(xiàng)的正誤即可【詳解】

9、當(dāng)時,所以數(shù)列從第2項(xiàng)起為等差數(shù)列,所以,故選:【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項(xiàng)公式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題8B【解析】作出圖形,設(shè)平面分別交、于點(diǎn)、,連接、,取的中點(diǎn),連接、,連接交于點(diǎn),推導(dǎo)出,由線面平行的性質(zhì)定理可得出,可得出點(diǎn)為的中點(diǎn),同理可得出點(diǎn)為的中點(diǎn),結(jié)合中位線的性質(zhì)可求得的值.【詳解】如下圖所示:設(shè)平面分別交、于點(diǎn)、,連接、,取的中點(diǎn),連接、,連接交于點(diǎn),四邊形為正方形,、分別為、的中點(diǎn),則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不

10、可能與平面平行,所以,平面,平面,平面,平面平面,所以,四邊形為平行四邊形,可得,為的中點(diǎn),同理可證為的中點(diǎn),因此,.故選:B.【點(diǎn)睛】本題考查線段長度比值的計(jì)算,涉及線面平行性質(zhì)的應(yīng)用,解答的關(guān)鍵就是找出平面與正方體各棱的交點(diǎn)位置,考查推理能力與計(jì)算能力,屬于中等題.9D【解析】利用直線與圓相交求出實(shí)數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點(diǎn)睛】本題考查幾何概型概率的計(jì)算,同時也考查了利用直線與圓相交求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.10A【解析】試題分析:因?yàn)榈恼归_式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以,

11、令,則,.考點(diǎn):1.二項(xiàng)式定理;2.組合數(shù)的計(jì)算.11C【解析】先得出兩直線平行的充要條件,根據(jù)小范圍可推導(dǎo)出大范圍,可得到答案.【詳解】直線,的充要條件是,當(dāng)a=2時,化簡后發(fā)現(xiàn)兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點(diǎn)睛】判斷充要條件的方法是:若pq為真命題且qp為假命題,則命題p是命題q的充分不必要條件;若pq為假命題且qp為真命題,則命題p是命題q的必要不充分條件;若pq為真命題且qp為真命題,則命題p是命題q的充要條件;若pq為假命題且qp為假命題,則命題p是命題q的即不充分也不必要條件判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,

12、誰小誰充分”的原則,判斷命題p與命題q的關(guān)系12D【解析】根據(jù)y與x的線性回歸方程為 y=0.85x85.71,則=0.850,y 與 x 具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點(diǎn)的中心(),B正確;該大學(xué)某女生身高增加 1cm,預(yù)測其體重約增加 0.85kg,C正確;該大學(xué)某女生身高為 170cm,預(yù)測其體重約為0.8517085.71=58.79kg,D錯誤故選D二、填空題:本題共4小題,每小題5分,共20分。13-1【解析】作出可行域,如圖:由得,由圖可知當(dāng)直線經(jīng)過A點(diǎn)時目標(biāo)函數(shù)取得最小值,A(1,0)所以-1故答案為-11432【解析】設(shè)EDa,根據(jù)勾股定理的逆定理可以通過計(jì)算可

13、以證明出CEED. AMx,根據(jù)三棱錐的體積公式,運(yùn)用基本不等式,可以求出AM的長度,最后根據(jù)球的表面積公式進(jìn)行求解即可.【詳解】設(shè)EDa,則CDa.可得CE2+DE2CD2,CEED.當(dāng)平面ABD平面BCD時,當(dāng)四面體CEMN的體積才有可能取得最大值,設(shè)AMx.則四面體CEMN的體積(ax)axax(ax),當(dāng)且僅當(dāng)x時取等號.解得a2.此時三棱錐ABCD的外接球的表面積4a232.故答案為:32【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,考查了球的表面積公式,考查了數(shù)學(xué)運(yùn)算能力和空間想象能力.15【解析】由題意可知:為上的單調(diào)函數(shù),則為定值,由指數(shù)函數(shù)的性質(zhì)可知為上的增函數(shù),則在,單調(diào)遞增,求導(dǎo),

14、則恒成立,則,根據(jù)函數(shù)的正弦函數(shù)的性質(zhì)即可求得的取值范圍【詳解】若方程無解,則或恒成立,所以為上的單調(diào)函數(shù),都有,則為定值,設(shè),則,易知為上的增函數(shù),又與的單調(diào)性相同,在上單調(diào)遞增,則當(dāng),恒成立,當(dāng),時,此時,故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,正弦函數(shù)的性質(zhì),輔助角公式,考查計(jì)算能力,屬于中檔題16【解析】化簡函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可【詳解】由知,當(dāng)時,在和上單調(diào)遞增,在和上均單調(diào)遞增,的取值范圍為:故答案為:【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題三、解

15、答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)1(2)【解析】(1)求得和,由,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解解法二:可利用導(dǎo)數(shù),先證明不等式,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解【詳解】(1)由題意,得, 由,得,令,則,因?yàn)?,所以在單調(diào)遞增, 又,所以當(dāng)時,單調(diào)遞增; 當(dāng)時,單調(diào)遞減;所以,當(dāng)且僅當(dāng)時等號成立 故方程有且僅有唯一解,實(shí)數(shù)的值為1 (2)解法一:令(),則,所以當(dāng)時,單調(diào)遞增; 當(dāng)時,單調(diào)遞減;故 令(),則(i)若時,在單

16、調(diào)遞增,所以,滿足題意 (ii)若時,滿足題意(iii)若時,在單調(diào)遞減,所以不滿足題意 綜上述: 解法二:先證明不等式,(*)令,則當(dāng)時,單調(diào)遞增,當(dāng)時,單調(diào)遞減,所以,即變形得,所以時,所以當(dāng)時,.又由上式得,當(dāng)時,.因此不等式(*)均成立 令(),則,(i)若時,當(dāng)時,單調(diào)遞增; 當(dāng)時,單調(diào)遞減;故 (ii)若時,在單調(diào)遞增,所以 因此,當(dāng)時,此時,則需由(*)知,(當(dāng)且僅當(dāng)時等號成立),所以 當(dāng)時,此時,則當(dāng)時, (由(*)知);當(dāng)時,(由(*)知)故對于任意,綜上述:【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計(jì)算能力,對于恒成立問

17、題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題18(1),;(2).【解析】(1)利用公式即可求得曲線的極坐標(biāo)方程;聯(lián)立直線和曲線的極坐標(biāo)方程,即可求得交點(diǎn)坐標(biāo);(2)設(shè)出點(diǎn)坐標(biāo)的參數(shù)形式,將問題轉(zhuǎn)化為求三角函數(shù)最值的問題即可求得.【詳解】(1)曲線的極坐標(biāo)方程: 聯(lián)立,得,又因?yàn)槎紳M足兩方程,故兩曲線的交點(diǎn)為,.(2)易知,直線. 設(shè)點(diǎn),則點(diǎn)到直線的距離(其中). 面積的最大值為.【點(diǎn)睛】本題考查極坐標(biāo)方程和直角坐標(biāo)方程之間的相互轉(zhuǎn)化,涉及利用橢圓的參數(shù)方程求面積的最值問題,

18、屬綜合中檔題.19(1)極大值為;極小值為;(2)見解析【解析】(1)對函數(shù)求導(dǎo),進(jìn)而可求出單調(diào)性,從而可求出函數(shù)的極值;(2)構(gòu)造函數(shù),求導(dǎo)并判斷單調(diào)性可得,從而在上恒成立,再結(jié)合,可得到,即可證明結(jié)論成立.【詳解】(1)函數(shù)的定義域?yàn)?所以當(dāng)時,;當(dāng)時,則的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設(shè)函數(shù),則,則在上恒成立,即在上單調(diào)遞增,故,又,則,即在上恒成立.因?yàn)?所以,又,則,因?yàn)?且在上單調(diào)遞減,所以,故.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性與極值,考查了利用導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)是解決本題的關(guān)鍵,屬于難題.20(1)(2)的方程為【解析】(1)令,則,由此能求出點(diǎn)C的軌跡方程(2)令,令直線,聯(lián)立,得,由此利用根的判別式,韋達(dá)定理,三角形面積公式,結(jié)合已知條件能求出直線的方程?!驹斀狻拷猓海?)因?yàn)?,即直線的斜率分別為且,設(shè)點(diǎn),則,整理得.(2)令,易知直線不與軸重合,令直線,與聯(lián)立得,所以有,由,故,即,從而,解得,即。所以直線的方程為。【點(diǎn)睛】本題考查橢圓方程、直線方程的求法,考查橢圓方程、橢圓與直線的位置關(guān)系,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題。21(1)(2)(3)直線平面,證明見解析【解析】取中點(diǎn),連接,則,再由已知證明平面,以為坐標(biāo)原點(diǎn),分別以,所在直線為,軸建立空間直角坐標(biāo)系,求出平面的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論