




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知集合A=x|1x1,則AB=A(1,1)B(1,2)C(1,+)D(1,+)2在等腰直角三角形中,為的中點(diǎn),將它沿翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球的表面積為(
2、).ABCD3已知函數(shù)的圖象如圖所示,則可以為( )ABCD4已知橢圓:的左、右焦點(diǎn)分別為,過(guò)的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為( )ABCD5已知等差數(shù)列的前n項(xiàng)和為,且,若(,且),則i的取值集合是( )ABCD6若集合M1,3,N1,3,5,則滿足MXN的集合X的個(gè)數(shù)為()A1B2C3D47已知命題,那么為( )ABCD8設(shè)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,若,則公比( )AB4CD29若復(fù)數(shù)滿足,則( )ABCD10如圖,在中,是上一點(diǎn),若,則實(shí)數(shù)的值為( )ABCD11已知函數(shù),當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為( )ABCD12從裝有除顏色外完全相同的3個(gè)白球和個(gè)黑球的布
3、袋中隨機(jī)摸取一球,有放回的摸取5次,設(shè)摸得白球數(shù)為,已知,則ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知向量,若向量與向量平行,則實(shí)數(shù)_14若一個(gè)正四面體的棱長(zhǎng)為1,四個(gè)頂點(diǎn)在同一個(gè)球面上,則此球的表面積為_(kāi).15設(shè),滿足約束條件,若目標(biāo)函數(shù)的最大值為,則的最小值為_(kāi)16設(shè)向量,且,則_.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足:,求的通項(xiàng)公式;(3)在第(2)問(wèn)的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;18(12分)2019年6月,國(guó)內(nèi)的運(yùn)營(yíng)牌
4、照開(kāi)始發(fā)放.從到,我們國(guó)家的移動(dòng)通信業(yè)務(wù)用了不到20年的時(shí)間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對(duì)的消費(fèi)意愿,2019年8月,從某地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預(yù)計(jì)升級(jí)到的時(shí)段人數(shù)早期體驗(yàn)用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2023年1月及以后200人我們將大學(xué)生升級(jí)時(shí)間的早晚與大學(xué)生愿意為套餐支付更多的費(fèi)用作比較,可得出下圖的關(guān)系(例如早期體驗(yàn)用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗(yàn)用戶的).(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生愿意在202
5、1年或2021年之前升級(jí)到的概率;(2)從樣本的早期體驗(yàn)用戶和中期跟隨用戶中各隨機(jī)抽取1人,以表示這2人中愿意為升級(jí)多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;(3)2019年底,從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐,能否認(rèn)為樣本中早期體驗(yàn)用戶的人數(shù)有變化?說(shuō)明理由.19(12分)如圖,在直三棱柱中,點(diǎn)分別為和的中點(diǎn).()棱上是否存在點(diǎn)使得平面平面?若存在,寫(xiě)出的長(zhǎng)并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.()求二面角的余弦值.20(12分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB/CD,AB =2BC,點(diǎn)Q為AE的中點(diǎn).(1)求證:A
6、C/平面DQF;(2)若ABC=60,ACFB,求BC與平面DQF所成角的正弦值.21(12分)已知橢圓的左右焦點(diǎn)分別是,點(diǎn)在橢圓上,滿足(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線過(guò)點(diǎn),且與橢圓只有一個(gè)公共點(diǎn),直線與的傾斜角互補(bǔ),且與橢圓交于異于點(diǎn)的兩點(diǎn),與直線交于點(diǎn)(介于兩點(diǎn)之間),是否存在直線,使得直線,的斜率按某種排序能構(gòu)成等比數(shù)列?若能,求出的方程,若不能,請(qǐng)說(shuō)理由.22(10分)在三棱錐S-ABC中,BAC=SBA=SCA=90,SAB=45,SAC=60,D為棱AB的中點(diǎn),SA=2(I)證明:SDBC;(II)求直線SD與平面SBC所成角的正弦值.2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析
7、)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【答案解析】根據(jù)并集的求法直接求出結(jié)果.【題目詳解】 , ,故選C.【答案點(diǎn)睛】考查并集的求法,屬于基礎(chǔ)題.2、D【答案解析】如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點(diǎn),這樣根據(jù)幾何關(guān)系,求外接球的半徑.【題目詳解】中,易知, 翻折后, ,設(shè)外接圓的半徑為, , ,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點(diǎn),設(shè)幾何體外接球的半徑為, , 四面體的外接球的表面積為.故選:D【答案
8、點(diǎn)睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計(jì)算能力,屬于中檔題型,求幾何體的外接球的半徑時(shí),一般可以用補(bǔ)形法,因正方體,長(zhǎng)方體的外接球半徑 容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長(zhǎng)方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.3、A【答案解析】根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個(gè)零點(diǎn),即可對(duì)選項(xiàng)逐個(gè)驗(yàn)證即可得出【題目詳解】首先對(duì)4個(gè)選項(xiàng)進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個(gè)選項(xiàng),對(duì)其在上的零點(diǎn)個(gè)數(shù)進(jìn)行判斷, 在上無(wú)零點(diǎn), 不符合題意,排除D;然后,對(duì)剩下的2
9、個(gè)選項(xiàng),進(jìn)行單調(diào)性判斷, 在上單調(diào)遞減, 不符合題意,排除C.故選:A【答案點(diǎn)睛】本題主要考查圖象的識(shí)別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題4、D【答案解析】由題可得,所以,又,所以,得,故可得橢圓的方程.【題目詳解】由題可得,所以,又,所以,得,所以橢圓的方程為.故選:D【答案點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.5、C【答案解析】首先求出等差數(shù)列的首先和公差,然后寫(xiě)出數(shù)列即可觀察到滿足的i的取值集合.【題目詳解】設(shè)公差為d,由題知,解得,所以數(shù)列為,故.故選:C.【答案點(diǎn)睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.6、D【答案解析】
10、可以是共4個(gè),選D.7、B【答案解析】利用特稱命題的否定分析解答得解.【題目詳解】已知命題,那么是.故選:【答案點(diǎn)睛】本題主要考查特稱命題的否定,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.8、D【答案解析】由得,又,兩式相除即可解出【題目詳解】解:由得,又,或,又正項(xiàng)等比數(shù)列得,故選:D【答案點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題9、B【答案解析】由題意得,求解即可.【題目詳解】因?yàn)?所以.故選:B.【答案點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.10、C【答案解析】由題意,可根據(jù)向量運(yùn)算法則得到(1m),從而由向量分解的唯一性得出關(guān)于t的方程,求出t的值.
11、【題目詳解】由題意及圖,又,所以,(1m),又t,所以,解得m,t,故選C【答案點(diǎn)睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關(guān)鍵,本題屬于基礎(chǔ)題.11、D【答案解析】由變形可得,可知函數(shù)在為增函數(shù), 由恒成立,求解參數(shù)即可求得取值范圍.【題目詳解】,即函數(shù)在時(shí)是單調(diào)增函數(shù).則恒成立. .令,則時(shí),單調(diào)遞減,時(shí)單調(diào)遞增.故選:D.【答案點(diǎn)睛】本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問(wèn)題,考查恒成立時(shí)求解參數(shù)問(wèn)題,考查學(xué)生的分析問(wèn)題的能力和計(jì)算求解的能力,難度較難.12、B【答案解析】由題意知,由,知,由此能求出【題目詳解】由題意知,解得,故選:B【答案
12、點(diǎn)睛】本題考查離散型隨機(jī)變量的方差的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意二項(xiàng)分布的靈活運(yùn)用二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】由題可得,因?yàn)橄蛄颗c向量平行,所以,解得14、【答案解析】將四面體補(bǔ)成一個(gè)正方體,通過(guò)正方體的對(duì)角線與球的半徑的關(guān)系,得到球的半徑,利用球的表面積公式,即可求解.【題目詳解】如圖所示,將正四面體補(bǔ)形成一個(gè)正方體,則正四面體的外接球與正方體的外接球表示同一個(gè)球,因?yàn)檎拿骟w的棱長(zhǎng)為1,所以正方體的棱長(zhǎng)為,設(shè)球的半徑為,因?yàn)榍虻闹睆绞钦襟w的對(duì)角線, 即,解得,所以球的表面積為.【答案點(diǎn)睛】本題主要考查了有關(guān)求得組合體的結(jié)構(gòu)特征,以及球的表面
13、積的計(jì)算,其中巧妙構(gòu)造正方體,利用正方體的外接球的直徑等于正方體的對(duì)角線長(zhǎng),得到球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.15、【答案解析】先根據(jù)條件畫(huà)出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為軸上的截距,只需求出直線,過(guò)可行域內(nèi)的點(diǎn)時(shí)取得最大值,從而得到一個(gè)關(guān)于,的等式,最后利用基本不等式求最小值即可【題目詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分, 當(dāng)直線過(guò)直線與直線的交點(diǎn)時(shí),目標(biāo)函數(shù)取得最大,即,即,而故答案為【答案點(diǎn)睛】本題主要考查了基本不等式在最值問(wèn)題中的應(yīng)用、簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題16、【答案解析】根據(jù)向量
14、的數(shù)量積的計(jì)算,以及向量的平方,簡(jiǎn)單計(jì)算,可得結(jié)果.【題目詳解】由題可知:且由所以故答案為:【答案點(diǎn)睛】本題考查向量的坐標(biāo)計(jì)算,主要考查計(jì)算,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),.(3)【答案解析】(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時(shí)的通項(xiàng)公式.也可利用數(shù)學(xué)歸納法,先猜想出通項(xiàng)公式,再用數(shù)學(xué)歸納法證明.(3)分類討論,當(dāng)n為奇數(shù)或偶數(shù)時(shí),分別求得的最大值,即可求得的取值范圍.【題目詳解】(1)由題意可知,.當(dāng)時(shí),當(dāng)時(shí),也滿足上式.所以
15、.(2)解法一:由(1)可知,即.當(dāng)時(shí),當(dāng)時(shí),所以,當(dāng)時(shí),當(dāng)時(shí),所以,當(dāng)時(shí),n為偶數(shù)當(dāng)時(shí),n為偶數(shù)所以以上個(gè)式子相加,得.又,所以當(dāng)n為偶數(shù)時(shí),.同理,當(dāng)n為奇數(shù)時(shí),所以,當(dāng)n為奇數(shù)時(shí),.解法二:猜測(cè):當(dāng)n為奇數(shù)時(shí),.猜測(cè):當(dāng)n為偶數(shù)時(shí),.以下用數(shù)學(xué)歸納法證明:,命題成立;假設(shè)當(dāng)時(shí),命題成立;當(dāng)n為奇數(shù)時(shí),當(dāng)時(shí),n為偶數(shù),由得故,時(shí),命題也成立.綜上可知, 當(dāng)n為奇數(shù)時(shí)同理,當(dāng)n為偶數(shù)時(shí),命題仍成立.(3)由(2)可知.當(dāng)n為偶數(shù)時(shí),所以隨n的增大而減小從而當(dāng)n為偶數(shù)時(shí),的最大值是.當(dāng)n為奇數(shù)時(shí),所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對(duì)于任意的,不等式恒成立,只需,故實(shí)數(shù)的取值
16、范圍是.【答案點(diǎn)睛】本題考查了累加法求數(shù)列通項(xiàng)公式的應(yīng)用,分類討論奇偶項(xiàng)的通項(xiàng)公式及求和方法,數(shù)學(xué)歸納法證明數(shù)列的應(yīng)用,數(shù)列的單調(diào)性及參數(shù)的取值范圍,屬于難題.18、(1)(2)詳見(jiàn)解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒(méi)有發(fā)生變化,詳見(jiàn)解析【答案解析】(1)由從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級(jí)到,結(jié)合古典摡型的概率計(jì)算公式,即可求解;(2)由題意的所有可能值為,利用相互獨(dú)立事件的概率計(jì)算公式,分別求得相應(yīng)的概率,得到隨機(jī)變量的分布列,利用期望的公式,即可求解.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都
17、已簽約套餐”,得到七概率為,即可得到結(jié)論.【題目詳解】(1)由題意可知,從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級(jí)到的概率估計(jì)為樣本中早期體驗(yàn)用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗(yàn)用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級(jí)多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級(jí)多支付10元或10元以上”,由題意可知,事件,相互獨(dú)立,且,所以,所以的分布列為0120.180.490.33故的數(shù)學(xué)期望.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,那么.回答一:事件雖然發(fā)生概率小,但
18、是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒(méi)有發(fā)生變化.回答二:事件發(fā)生概率小,所以可以認(rèn)為早期體驗(yàn)用戶人數(shù)增加.【答案點(diǎn)睛】本題主要考查了離散型隨機(jī)變量的分布列,數(shù)學(xué)期望的求解及應(yīng)用,對(duì)于求離散型隨機(jī)變量概率分布列問(wèn)題首先要清楚離散型隨機(jī)變量的可能取值,計(jì)算得出概率,列出離散型隨機(jī)變量概率分布列,最后按照數(shù)學(xué)期望公式計(jì)算出數(shù)學(xué)期望,其中列出離散型隨機(jī)變量概率分布列及計(jì)算數(shù)學(xué)期望是理科高考數(shù)學(xué)必考問(wèn)題.19、()存在點(diǎn)滿足題意,且,證明詳見(jiàn)解析;().【答案解析】()可考慮采用補(bǔ)形法,取的中點(diǎn)為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能證明,則可得證,可通過(guò)我們反推出點(diǎn)對(duì)
19、應(yīng)位置應(yīng)在處,進(jìn)而得證;()采用建系法,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求出兩平面對(duì)應(yīng)法向量,再結(jié)合向量夾角公式即可求解;【題目詳解】()存在點(diǎn)滿足題意,且.證明如下:取的中點(diǎn)為,連接.則,所以平面.因?yàn)槭堑闹悬c(diǎn),所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),所以,從而可得.又因?yàn)?,所以平?因?yàn)槠矫?,所以平面平?()如圖所示,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系.易知,所以,.設(shè)平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【答案點(diǎn)睛】本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題2
20、0、(1)見(jiàn)解析(2)【答案解析】(1)連接交于點(diǎn),連接,通過(guò)證明,證得平面.(2)建立空間直角坐標(biāo)系,利用直線的方向向量和平面的法向量,計(jì)算出線面角的正弦值.【題目詳解】(1)證明:連接交于點(diǎn),連接,因?yàn)樗倪呅螢檎叫危渣c(diǎn)為的中點(diǎn),又因?yàn)闉榈闹悬c(diǎn),所以; 平面平面,平面.(2)解:,設(shè),則,在中,由余弦定理得:,又,平面平面 如圖建立的空間直角坐標(biāo)系在等腰梯形中,可得則那么 設(shè)平面的法向量為,則有,即,取,得 設(shè)與平面所成的角為,則所以與平面所成角的正弦值為 【答案點(diǎn)睛】本小題主要考查線面平行的證明,考查線面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1);(2)不能,理由見(jiàn)解析【答案解析】(1)設(shè),則,由此即可求出橢圓方程;(2)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 文體活動(dòng)周末活動(dòng)方案
- 新手媽媽活動(dòng)方案
- 數(shù)碼家居活動(dòng)方案
- 旅游安全宣傳日活動(dòng)方案
- 春節(jié)開(kāi)門(mén)美甲店活動(dòng)方案
- 新年創(chuàng)意拼接活動(dòng)方案
- 旅游公司會(huì)員卡活動(dòng)方案
- 新城控股文化活動(dòng)方案
- 新年團(tuán)委活動(dòng)方案
- 新車(chē)保險(xiǎn)活動(dòng)方案
- 人教版七年級(jí)下冊(cè)數(shù)學(xué)全冊(cè)課件
- 猜歌名教學(xué)講解課件
- STEMI患者接受P2Y12受體抑制劑預(yù)處理的探討
- 大學(xué)物理課件-光電效應(yīng)
- 比亞迪秦PLUS EV說(shuō)明書(shū)
- 安全生產(chǎn)培訓(xùn)記錄及效果評(píng)估表
- 潘祖仁版高分子化學(xué)(第五版)課后習(xí)題答案.24401
- 吉林省房屋修繕及抗震加固工程計(jì)價(jià)定額說(shuō)明
- 預(yù)制箱梁施工監(jiān)理重點(diǎn)檢查內(nèi)容標(biāo)準(zhǔn)版
- 干部人事檔案目錄(樣表)
- 2023年北京理工附中小升初英語(yǔ)分班考試復(fù)習(xí)題
評(píng)論
0/150
提交評(píng)論