版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Demand Forecastingin a Supply Chain7-1大綱預(yù)測(cè)在供應(yīng)鏈的角色預(yù)測(cè)的特性主要企業(yè)預(yù)測(cè)項(xiàng)目預(yù)測(cè)的方法與組成時(shí)間序列預(yù)測(cè)預(yù)測(cè)誤差的衡量指標(biāo)執(zhí)行預(yù)測(cè)的建議CPFR2預(yù)測(cè)在供應(yīng)鏈的角色The basis for all strategic and planning decisions in a supply chainExamples:Production: scheduling, inventory, aggregate planningMarketing: sales force allocation, promotions, new production in
2、troductionFinance: plant/equipment investment, budgetary planningPersonnel: workforce planning, hiring, layoffsAll of these decisions are interrelated3預(yù)測(cè)的特性Forecasts are always wrong. Should include expected value and measure of error.Long-term forecasts are less accurate than short-term forecasts (
3、forecast horizon is important)Aggregate forecasts are more accurate than disaggregate forecasts4主要企業(yè)預(yù)測(cè)項(xiàng)目市場(chǎng)需求量母體數(shù)預(yù)測(cè)單位需求量預(yù)測(cè)驅(qū)動(dòng)變數(shù)預(yù)測(cè)市場(chǎng)佔(zhàn)有率預(yù)測(cè)企業(yè)銷售量預(yù)測(cè)單價(jià)預(yù)測(cè)生命週期預(yù)測(cè)5預(yù)測(cè)的方法主觀法(subjective methods)預(yù)測(cè)人員依個(gè)人主觀的判斷進(jìn)行預(yù)測(cè)常應(yīng)用在缺乏歷史資料時(shí)透過專家進(jìn)行主觀預(yù)測(cè)草根法Grass rootsBottom up市調(diào)法Market researchLong-rangeNew product sales歷史類推法Historical
4、 analogy類似的產(chǎn)品經(jīng)驗(yàn)類推Delphi Method以問卷方式蒐集專家意見以進(jìn)行預(yù)測(cè)經(jīng)由問卷溝通,專家間無(wú)直接互動(dòng)以避免主控性以統(tǒng)計(jì)量收斂為停止指標(biāo)6預(yù)測(cè)的方法客觀法(objective methods)以歷史資料為基礎(chǔ)進(jìn)行預(yù)測(cè)Time Series(外插法)假設(shè)過去之需求資料是未來(lái)需求良好指標(biāo)下,使用歷史資料進(jìn)行預(yù)測(cè),適合當(dāng)需求環(huán)境穩(wěn)定、無(wú)劇烈變動(dòng)時(shí)進(jìn)行Causal (因果關(guān)係法)假設(shè)需求與環(huán)境中某些因素是高度相關(guān),藉由發(fā)現(xiàn)需求與環(huán)境因素的相關(guān)性去估計(jì)未來(lái)的需求Transfer Function Model(轉(zhuǎn)換函數(shù)模式)結(jié)合Time Series 與 Causal 兩者,經(jīng)由解釋變
5、數(shù)與應(yīng)變數(shù)之歷史資料產(chǎn)生轉(zhuǎn)換函數(shù),再將解釋變數(shù)之預(yù)測(cè)值代入轉(zhuǎn)換函數(shù)產(chǎn)生應(yīng)變數(shù)之預(yù)測(cè)值A(chǔ)RIMAT 、SARIMAT7需求資料的組成Observed demand (O) =Systematic component (S) + Random component (R)Level (current deseasonalized demand)Trend (growth or decline in demand)Seasonality (predictable seasonal fluctuation) Systematic component: Expected value of demand R
6、andom component: The part of the forecast that deviates from the systematic component Forecast error: difference between forecast and actual demand8需求資料組成的關(guān)係類型相乘 系統(tǒng)部分水準(zhǔn) 趨勢(shì) 季節(jié)性因素相加 系統(tǒng)部分水準(zhǔn) 趨勢(shì) 季節(jié)性因素混合 系統(tǒng)部分(水準(zhǔn) 趨勢(shì)) 季節(jié)性因素9時(shí)間序列預(yù)測(cè)Forecast demand for thenext four quarters.10時(shí)間序列預(yù)測(cè)11預(yù)測(cè)的方法Static AdaptiveMoving
7、 averageSimple exponential smoothingHolts model (with trend)Winters model (with trend and seasonality)12預(yù)測(cè)的流程Understand the objectives of forecastingIntegrate demand planning and forecastingIdentify major factors that influence the demand forecastUnderstand and identify customer segmentsDetermine th
8、e appropriate forecasting techniqueEstablish performance and error measures for the forecast13時(shí)間序列預(yù)測(cè)Goal is to predict systematic component of demandMultiplicative: (level)(trend)(seasonal factor)Additive: level + trend + seasonal factorMixed: (level + trend)(seasonal factor)Static methodsAdaptive f
9、orecasting14靜態(tài)法Assume a mixed model: Systematic component = (level + trend)(seasonal factor)Ft+l = L + (t + l)TSt+l = forecast in period t for demand in period t + lL = estimate of level for period 0T = estimate of trendSt = estimate of seasonal factor for period tDt = actual demand in period tFt =
10、forecast of demand in period t15靜態(tài)法Estimating level and trendEstimating seasonal factors16範(fàn)例資料分析產(chǎn)品之需求有季節(jié)性的現(xiàn)象每年度之第二季為全年度需求最低之時(shí)需求皆是從每年度之第二季遞增至下年度之第一季此需求變化呈現(xiàn)週期現(xiàn)象,每個(gè)週期為一年三個(gè)週期的需求水準(zhǔn)有逐漸上升的趨勢(shì)17Level and Trend因子的估計(jì)Before estimating level and trend, demand data must be deseasonalizedDeseasonalized demand = de
11、mand that would have been observed in the absence of seasonal fluctuationsPeriodicity (p) the number of periods after which the seasonal cycle repeats itselffor demand at Tahoe Salt (Table 7.1, Figure 7.1) p = 418去季節(jié)因子的需求資料 Dt-(p/2) + Dt+(p/2) + S 2Di / 2p for p evenDt = (sum is from i = t+1-(p/2) t
12、o t+1+(p/2) S Di / p for p odd (sum is from i = t-(p/2) to t+(p/2), p/2 truncated to lower integer19去季節(jié)因子的需求資料For the example, p = 4 is evenFor t = 3:D3 = D1 + D5 + Sum(i=2 to 4) 2Di/8= 8000+10000+(2)(13000)+(2)(23000)+(2)(34000)/8= 19750D4 = D2 + D6 + Sum(i=3 to 5) 2Di/8= 13000+18000+(2)(23000)+(2)
13、(34000)+(2)(10000)/8= 2062520去季節(jié)因子的需求資料Then include trendDt = L + tTwhere Dt = deseasonalized demand in period tL = level (deseasonalized demand at period 0)T = trend (rate of growth of deseasonalized demand)Trend is determined by linear regression using deseasonalized demand as the dependent variab
14、le and period as the independent variable (can be done in Excel)In the example, L = 18,439 and T = 52421需求的時(shí)間序列 (Figure 7.3)22估計(jì)季節(jié)因子Use the previous equation to calculate deseasonalized demand for each periodSt = Dt / Dt = seasonal factor for period tIn the example, D2 = 18439 + (524)(2) = 19487 D2
15、= 13000S2 = 13000/19487 = 0.67The seasonal factors for the other periods are calculated in the same manner23估計(jì)季節(jié)因子(Fig. 7.4)24估計(jì)季節(jié)因子The overall seasonal factor for a “season” is then obtained by averaging all of the factors for a “season”If there are r seasonal cycles, for all periods of the form pt
16、+i, 1ip, the seasonal factor for season i is Si = Sum(j=0 to r-1) Sjp+i/r In the example, there are 3 seasonal cycles in the data and p=4, soS1 = (0.42+0.47+0.52)/3 = 0.47 S2 = (0.67+0.83+0.55)/3 = 0.68S3 = (1.15+1.04+1.32)/3 = 1.17 S4 = (1.66+1.68+1.66)/3 = 1.6725預(yù)測(cè)未來(lái)需求Using the original equation,
17、we can forecast the next four periods of demand:F13 = (L+13T)S1 = 18439+(13)(524)(0.47) = 11868F14 = (L+14T)S2 = 18439+(14)(524)(0.68) = 17527F15 = (L+15T)S3 = 18439+(15)(524)(1.17) = 30770F16 = (L+16T)S4 = 18439+(16)(524)(1.67) = 4479426動(dòng)態(tài)預(yù)測(cè)法The estimates of level, trend, and seasonality are adjust
18、ed after each demand observationGeneral steps in adaptive forecastingMoving averageSimple exponential smoothingTrend-corrected exponential smoothing (Holts model)Trend- and seasonality-corrected exponential smoothing (Winters model)27動(dòng)態(tài)預(yù)測(cè)模式的符號(hào)說(shuō)明Ft+1 = (Lt + lT)St+1 = forecast for period t+l in perio
19、d t Lt = Estimate of level at the end of period t Tt = Estimate of trend at the end of period t St = Estimate of seasonal factor for period t Ft = Forecast of demand for period t (made period t-1 or earlier)Dt = Actual demand observed in period t Et = Forecast error in period t At = Absolute deviati
20、on for period t = |Et|MAD = Mean Absolute Deviation = average value of At 28動(dòng)態(tài)預(yù)測(cè)的基本步驟Initialize: Compute initial estimates of level (L0), trend (T0), and seasonal factors (S1,Sp). This is done as in static forecasting.Forecast: Forecast demand for period t+1 using the general equationEstimate error:
21、 Compute error Et+1 = Ft+1- Dt+1 Modify estimates: Modify the estimates of level (Lt+1), trend (Tt+1), and seasonal factor (St+p+1), given the error Et+1 in the forecastRepeat steps 2, 3, and 4 for each subsequent period29移動(dòng)平均法Used when demand has no observable trend or seasonalitySystematic compone
22、nt of demand = levelThe level in period t is the average demand over the last N periods (the N-period moving average)Current forecast for all future periods is the same and is based on the current estimate of the levelLt = (Dt + Dt-1 + + Dt-N+1) / N Ft+1 = Lt and Ft+n = Lt After observing the demand
23、 for period t+1, revise the estimates as follows:Lt+1 = (Dt+1 + Dt + + Dt-N+2) / N Ft+2 = Lt+1 30移動(dòng)平均法From Tahoe Salt example (Table 7.1)At the end of period 4, what is the forecast demand for periods 5 through 8 using a 4-period moving average?L4 = (D4+D3+D2+D1)/4 = (34000+23000+13000+8000)/4 = 195
24、00F5 = 19500 = F6 = F7 = F8Observe demand in period 5 to be D5 = 10000Forecast error in period 5, E5 = F5-D5 = 19500-10000 = 9500Revise estimate of level in period 5:L5 = (D5+D4+D3+D2)/4 = (10000+34000+23000+13000)/4 = 20000F6 = L5 = 2000031簡(jiǎn)單指數(shù)平滑法Used when demand has no observable trend or seasonal
25、itySystematic component of demand = levelInitial estimate of level, L0, assumed to be the average of all historical dataL0 = Sum(i=1 to n)Di/nCurrent forecast for all future periods is equal to the current estimate of the level and is given as follows:Ft+1 = Lt and Ft+n = Lt After observing demand D
26、t+1, revise the estimate of the level:Lt+1 = aDt+1 + (1-a)Lt Lt+1 = Sum(n=0 to t+1)a(1-a)nDt+1-n 32簡(jiǎn)單指數(shù)平滑法From Tahoe Salt data, forecast demand for period 1 using exponential smoothingL0 = average of all 12 periods of data= Sum(i=1 to 12)Di/12 = 22083 F1 = L0 = 22083Observed demand for period 1 = D1
27、 = 8000Forecast error for period 1, E1, is as follows:E1 = F1 - D1 = 22083 - 8000 = 14083Assuming a = 0.1, revised estimate of level for period 1:L1 = aD1 + (1-a)L0 = (0.1)(8000) + (0.9)(22083) = 20675F2 = L1 = 20675Note that the estimate of level for period 1 is lower than in period 033Holts ModelA
28、ppropriate when the demand is assumed to have a level and trend in the systematic component of demand but no seasonalityObtain initial estimate of level and trend by running a linear regression of the following form:Dt = at + b T0 = a L0 = bIn period t, the forecast for future periods is expressed a
29、s follows:Ft+1 = Lt + Tt Ft+n = Lt + nTt 34Holts ModelAfter observing demand for period t, revise the estimates for level and trend as follows:Lt+1 = aDt+1 + (1-a)(Lt + Tt) Tt+1 = b(Lt+1 - Lt) + (1-b)Tt a = smoothing constant for levelb = smoothing constant for trendExample: Tahoe Salt demand data.
30、Forecast demand for period 1 using Holts model (trend corrected exponential smoothing)Using linear regression,L0 = 12015 (linear intercept) T0 = 1549 (linear slope)35Holts ModelForecast for period 1:F1 = L0 + T0 = 12015 + 1549 = 13564Observed demand for period 1 = D1 = 8000E1 = F1 - D1 = 13564 - 800
31、0 = 5564Assume a = 0.1, b = 0.2L1 = aD1 + (1-a)(L0+T0) = (0.1)(8000) + (0.9)(13564) = 13008T1 = b(L1 - L0) + (1-b)T0 = (0.2)(13008 - 12015) + (0.8)(1549) = 1438F2 = L1 + T1 = 13008 + 1438 = 14446F5 = L1 + 4T1 = 13008 + (4)(1438) = 1876036Winters ModelAppropriate when the systematic component of dema
32、nd is assumed to have a level, trend, and seasonal factorSystematic component = (level+trend)(seasonal factor)Assume periodicity pObtain initial estimates of level (L0), trend (T0), seasonal factors (S1,Sp) using procedure for static forecastingIn period t, the forecast for future periods is given b
33、y:Ft+1 = (Lt+Tt)(St+1) and Ft+n = (Lt + nTt)St+n 37Winters ModelAfter observing demand for period t+1, revise estimates for level, trend, and seasonal factors as follows:Lt+1 = a(Dt+1/St+1) + (1-a)(Lt+Tt)Tt+1 = b(Lt+1 - Lt) + (1-b)TtSt+p+1 = g(Dt+1/Lt+1) + (1-g)St+1 a = smoothing constant for levelb
34、 = smoothing constant for trendg = smoothing constant for seasonal factor38Winters ModelExample: Tahoe Salt data. Forecast demand for period 1 using Winters model.Initial estimates of level, trend, and seasonal factors are obtained as in the static forecasting case39 Winters ModelL0 = 18439 T0 = 524
35、S1=0.47, S2=0.68, S3=1.17, S4=1.67F1 = (L0 + T0)S1 = (18439+524)(0.47) = 8913The observed demand for period 1 = D1 = 8000Forecast error for period 1 = E1 = F1-D1 = 8913 - 8000 = 913Assume a = 0.1, b=0.2, g=0.1; revise estimates for level and trend for period 1 and for seasonal factor for period 5L1 = a(D1/S1)+(1-a)(L0+T0) = (0.1)(8000/0.47)+(0.9)(18439+524)=18769T1 = b(L1-L0)+(1-b)T0 = (0.2)(18769-18439)+(0.8)(524) = 485S5 = g(D1/L1)+(1-g)S1 = (0.1)(8000/18769)+(0.9)(0.47) = 0.47F2 = (L1+T1)S2 = (18769 + 485)(0.68) = 1309340預(yù)測(cè)誤差類型偏差(bias)與隨機(jī)誤差(random error)偏
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度隔墻板市場(chǎng)推廣與銷售合同
- 2024年企業(yè)合規(guī)管理與風(fēng)險(xiǎn)評(píng)估服務(wù)合同
- 2024人工智能在金融服務(wù)中的應(yīng)用合同
- 2024年度品牌授權(quán)合同:知名品牌授權(quán)使用合同
- 句子改寫課件教學(xué)課件
- 2024年度云計(jì)算服務(wù)帶寬擴(kuò)展及維護(hù)合同
- 2024年度吊車保險(xiǎn)合同:保險(xiǎn)責(zé)任與賠償限額
- 2024中小企業(yè)貸款及還款細(xì)節(jié)合同
- 2024年應(yīng)急響應(yīng):消防設(shè)施建設(shè)與維護(hù)合同
- 2024年工程承包商發(fā)包合同
- 宣傳欄安裝施工方案
- 張曉風(fēng)散文自選集
- 膽囊息肉的護(hù)理查房
- 新課標(biāo)下小學(xué)生運(yùn)算能力的培養(yǎng)研究的開題報(bào)告
- 餐飲行業(yè)初期投資預(yù)算分析
- 遼寧省重點(diǎn)高中沈陽(yáng)市郊聯(lián)體2023-2024學(xué)年高三上學(xué)期期中生物試題(解析版)
- 剪映:手機(jī)短視頻制作-配套課件
- 西氣東輸二線25標(biāo)段山嶺隧道內(nèi)管道安裝技術(shù)
- 防校園欺凌-課件(共28張PPT)
- 第6章 智能網(wǎng)聯(lián)汽車測(cè)評(píng)技術(shù)
評(píng)論
0/150
提交評(píng)論