安徽省宿州市第五中學2021-2022學年中考數(shù)學考試模擬沖刺卷含解析_第1頁
安徽省宿州市第五中學2021-2022學年中考數(shù)學考試模擬沖刺卷含解析_第2頁
安徽省宿州市第五中學2021-2022學年中考數(shù)學考試模擬沖刺卷含解析_第3頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.由若干個相同的小立方體搭成的幾何體的三視圖如圖所示,則搭成這個幾何體的小立方體的個數(shù)是()A.3 B.4 C.5 D.62.改革開放40年以來,城鄉(xiāng)居民生活水平持續(xù)快速提升,居民教育、文化和娛樂消費支出持續(xù)增長,已經(jīng)成為居民各項消費支出中僅次于居住、食品煙酒、交通通信后的第四大消費支出,如圖為北京市統(tǒng)計局發(fā)布的2017年和2018年我市居民人均教育、文化和娛樂消費支出的折線圖.說明:在統(tǒng)計學中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2018年第二季度與2017年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2018年第二季度與2018年第一季度相比較.根據(jù)上述信息,下列結論中錯誤的是()A.2017年第二季度環(huán)比有所提高B.2017年第三季度環(huán)比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高3.下列計算或化簡正確的是()A. B.C. D.4.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數(shù)最多為()A.7 B.8 C.9 D.105.下列函數(shù)中,y隨著x的增大而減小的是()A.y=3x B.y=﹣3x C. D.6.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,則下列結論,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正確的有()A.1個 B.2個 C.3個 D.47.拒絕“餐桌浪費”,刻不容緩.節(jié)約一粒米的帳:一個人一日三餐少浪費一粒米,全國一年就可以節(jié)省斤,這些糧食可供9萬人吃一年.“”這個數(shù)據(jù)用科學記數(shù)法表示為()A. B. C. D..8.若不等式組無解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>29.如圖,將△ABC繞點C順時針旋轉,使點B落在AB邊上點B′處,此時,點A的對應點A′恰好落在BC邊的延長線上,下列結論錯誤的是()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′10.已知x=1是方程x2+mx+n=0的一個根,則代數(shù)式m2+2mn+n2的值為()A.–1B.2C.1D.–2二、填空題(本大題共6個小題,每小題3分,共18分)11.若不等式(a+1)x>a+1的解集是x<1,則a的取值范圍是_________.12.計算:+(|﹣3|)0=_____.13.如圖所示,數(shù)軸上點A所表示的數(shù)為a,則a的值是____.14.如圖,在長方形ABCD中,AF⊥BD,垂足為E,AF交BC于點F,連接DF.圖中有全等三角形_____對,有面積相等但不全等的三角形_____對.15.如圖,點A在雙曲線上,點B在雙曲線上,且AB∥x軸,C、D在x軸上,若四邊形ABCD為矩形,則它的面積為.16.不等式組的最大整數(shù)解是__________.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AD=8,DE=5,求BC的長.18.(8分)某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).為了提前完成生產(chǎn)任務,工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務,求原計劃安排的工人人數(shù).19.(8分)某調查小組采用簡單隨機抽樣方法,對某市部分中小學生一天中陽光體育運動時間進行了抽樣調查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計圖:(1)該調查小組抽取的樣本容量是多少?(2)求樣本學生中陽光體育運動時間為1.5小時的人數(shù),并補全占頻數(shù)分布直方圖;(3)請估計該市中小學生一天中陽光體育運動的平均時間.20.(8分)九(1)班數(shù)學興趣小組經(jīng)過市場調查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關信息如下表:時間x(天)

1≤x<50

50≤x≤90

售價(元/件)

x+40

90

每天銷量(件)

200-2x

已知該商品的進價為每件30元,設銷售該商品的每天利潤為y元[求出y與x的函數(shù)關系式;問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結果.21.(8分)如圖,拋物線y=﹣x2﹣x+4與x軸交于A,B兩點(A在B的左側),與y軸交于點C.(1)求點A,點B的坐標;(2)P為第二象限拋物線上的一個動點,求△ACP面積的最大值.22.(10分)一輛高鐵與一輛動車組列車在長為1320千米的京滬高速鐵路上運行,已知高鐵列車比動車組列車平均速度每小時快99千米,且高鐵列車比動車組列車全程運行時間少3小時,求這輛高鐵列車全程運行的時間和平均速度.23.(12分)列方程解應用題:某市今年進行水網(wǎng)升級,1月1日起調整居民用水價格,每立方米水費上漲,小麗家去年12月的水費是15元,而今年5月的水費則是30元.已知小麗家今年5月的用水量比去年12月的用水量多5m3,求該市今年居民用水的價格.24.先化簡再求值:,其中,.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).解答:解:從主視圖看第一列兩個正方體,說明俯視圖中的左邊一列有兩個正方體,主視圖右邊的一列只有一行,說明俯視圖中的右邊一行只有一列,所以此幾何體共有四個正方體.故選B.2、C【解析】

根據(jù)環(huán)比和同比的比較方法,驗證每一個選項即可.【詳解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正確;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正確;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C錯誤;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正確;故選C.【點睛】本題考查折線統(tǒng)計圖,同比和環(huán)比的意義;能夠從統(tǒng)計圖中獲取數(shù)據(jù),按要求對比數(shù)據(jù)是解題的關鍵.3、D【解析】解:A.不是同類二次根式,不能合并,故A錯誤;B.

,故B錯誤;C.,故C錯誤;D.,正確.故選D.4、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數(shù)最多為9個,故選C.【點睛】考查了三視圖判定幾何體,關鍵是對三視圖靈活運用,體現(xiàn)了對空間想象能力的考查.5、B【解析】試題分析:A、y=3x,y隨著x的增大而增大,故此選項錯誤;B、y=﹣3x,y隨著x的增大而減小,正確;C、,每個象限內(nèi),y隨著x的增大而減小,故此選項錯誤;D、,每個象限內(nèi),y隨著x的增大而增大,故此選項錯誤;故選B.考點:反比例函數(shù)的性質;正比例函數(shù)的性質.6、B【解析】

由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】①拋物線與y軸交于負半軸,則c<1,故①正確;②對稱軸x1,則2a+b=1.故②正確;③由圖可知:當x=1時,y=a+b+c<1.故③錯誤;④由圖可知:拋物線與x軸有兩個不同的交點,則b2﹣4ac>1.故④錯誤.綜上所述:正確的結論有2個.故選B.【點睛】本題考查了圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的值求2a與b的關系,以及二次函數(shù)與方程之間的轉換,根的判別式的熟練運用.7、C【解析】

用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】32400000=3.24×107元.

故選C.【點睛】此題主要考查了用科學記數(shù)法表示較大的數(shù),一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關鍵.8、A【解析】

先求出每個不等式的解集,再根據(jù)不等式組解集的求法和不等式組無解的條件,即可得到m的取值范圍.【詳解】由①得,x<m,由②得,x>1,又因為不等式組無解,所以m≤1.故選A.【點睛】此題的實質是考查不等式組的求法,求不等式組的解集,要根據(jù)以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.9、C【解析】

根據(jù)旋轉的性質求解即可.【詳解】解:根據(jù)旋轉的性質,A:∠與∠均為旋轉角,故∠=∠,故A正確;B:,,又,,故B正確;D:,B′C平分∠BB′A′,故D正確.無法得出C中結論,故答案:C.【點睛】本題主要考查三角形旋轉后具有的性質,注意靈活運用各條件10、C【解析】

把x=1代入x2+mx+n=0,可得m+n=-1,然后根據(jù)完全平方公式把m2+2mn+n2變形后代入計算即可.【詳解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故選C.【點睛】本題考查了方程的根和整體代入法求代數(shù)式的值,能使方程兩邊相等的未知數(shù)的值叫做方程的根.二、填空題(本大題共6個小題,每小題3分,共18分)11、a<﹣1【解析】不等式(a+1)x>a+1兩邊都除以a+1,得其解集為x<1,∴a+1<0,解得:a<?1,故答案為a<?1.點睛:本題主要考查解一元一次不等式,解答此題的關鍵是掌握不等式的性質,再不等式兩邊同加或同減一個數(shù)或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個正數(shù)或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個負數(shù)或式子,不等號的方向改變.12、【解析】原式=.13、【解析】

根據(jù)數(shù)軸上點的特點和相關線段的長,利用勾股定理求出斜邊的長,即知表示0的點和A之間的線段的長,進而可推出A的坐標.【詳解】∵直角三角形的兩直角邊為1,2,∴斜邊長為,那么a的值是:﹣.故答案為.【點睛】此題主要考查了實數(shù)與數(shù)軸之間的對應關系,其中主要利用了:已知兩點間的距離,求較大的數(shù),就用較小的數(shù)加上兩點間的距離.14、11【解析】

根據(jù)長方形的對邊相等,每一個角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“邊角邊”證明Rt△ABD和Rt△CDB全等;根據(jù)等底等高的三角形面積相等解答.【詳解】有,Rt△ABD≌Rt△CDB,理由:在長方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD與△BFA,△ABD與△AFD,△ABE與△DFE,△AFD與△BCD面積相等,但不全等.故答案為:1;1.【點睛】本題考查了全等三角形的判定,長方形的性質,以及等底等高的三角形的面積相等.15、2【解析】

如圖,過A點作AE⊥y軸,垂足為E,∵點A在雙曲線上,∴四邊形AEOD的面積為1∵點B在雙曲線上,且AB∥x軸,∴四邊形BEOC的面積為3∴四邊形ABCD為矩形,則它的面積為3-1=216、【解析】

先求出每個不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數(shù)解.【詳解】解:,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數(shù)解為0,1,1,則該不等式組的最大整數(shù)解是x=1.故答案為:1.【點睛】考查不等式組的解法及整數(shù)解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.三、解答題(共8題,共72分)17、(1)見解析(2)7.5【解析】

(1)只要證明∠A+∠B=90°,∠ADE+∠B=90°即可解決問題;(2)首先證明AC=2DE=10,在Rt△ADC中,求得DC=6,設BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解決問題.【詳解】(1)證明:連接OD,∵DE是切線,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠A=∠ADE;(2)連接CD,∵∠A=∠ADE∴AE=DE,∵BC是⊙O的直徑,∠ACB=90°,∴EC是⊙O的切線,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=,設BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,∴x2+62=(x+8)2-102,解得x=4.5,∴BC=【點睛】此題主要考查圓的切線問題,解題的關鍵是熟知切線的性質.18、(1)2400個,10天;(2)1人.【解析】

(1)設原計劃每天生產(chǎn)零件x個,根據(jù)相等關系“原計劃生產(chǎn)24000個零件所用時間=實際生產(chǎn)(24000+300)個零件所用的時間”可列方程,解出x即為原計劃每天生產(chǎn)的零件個數(shù),再代入即可求得規(guī)定天數(shù);(2)設原計劃安排的工人人數(shù)為y人,根據(jù)“(5組機器人生產(chǎn)流水線每天生產(chǎn)的零件個數(shù)+原計劃每天生產(chǎn)的零件個數(shù))×(規(guī)定天數(shù)-2)=零件總數(shù)24000個”可列方程[5×20×(1+20%)×+2400]×(10-2)=24000,解得y的值即為原計劃安排的工人人數(shù).【詳解】解:(1)解:設原計劃每天生產(chǎn)零件x個,由題意得,,解得x=2400,經(jīng)檢驗,x=2400是原方程的根,且符合題意.∴規(guī)定的天數(shù)為24000÷2400=10(天).答:原計劃每天生產(chǎn)零件2400個,規(guī)定的天數(shù)是10天.(2)設原計劃安排的工人人數(shù)為y人,由題意得,[5×20×(1+20%)×+2400]×(10-2)=24000,解得,y=1.經(jīng)檢驗,y=1是原方程的根,且符合題意.答:原計劃安排的工人人數(shù)為1人.【點睛】本題考查分式方程的應用,找準等量關系是本題的解題關鍵,注意分式方程結果要檢驗.19、(4)500;(4)440,作圖見試題解析;(4)4.4.【解析】

(4)利用0.5小時的人數(shù)除以其所占比例,即可求出樣本容量;(4)利用樣本容量乘以4.5小時的百分數(shù),即可求出4.5小時的人數(shù),畫圖即可;(4)計算出該市中小學生一天中陽光體育運動的平均時間即可.【詳解】解:(4)由題意可得:0.5小時的人數(shù)為:400人,所占比例為:40%,∴本次調查共抽樣了500名學生;(4)4.5小時的人數(shù)為:500×4.4=440(人),如圖所示:(4)根據(jù)題意得:=4.4,即該市中小學生一天中陽光體育運動的平均時間為4.4小時.考點:4.頻數(shù)(率)分布直方圖;4.扇形統(tǒng)計圖;4.加權平均數(shù).20、(1);(2)第45天時,當天銷售利潤最大,最大利潤是6050元;(3)41.【解析】

(1)根據(jù)單價乘以數(shù)量,可得利潤,可得答案.(2)根據(jù)分段函數(shù)的性質,可分別得出最大值,根據(jù)有理數(shù)的比較,可得答案.(3)根據(jù)二次函數(shù)值大于或等于4800,一次函數(shù)值大于或等于48000,可得不等式,根據(jù)解不等式組,可得答案.【詳解】(1)當1≤x<50時,,當50≤x≤90時,,綜上所述:.(2)當1≤x<50時,二次函數(shù)開口下,二次函數(shù)對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050,當50≤x≤90時,y隨x的增大而減小,當x=50時,y最大=6000,綜上所述,該商品第45天時,當天銷售利潤最大,最大利潤是6050元.(3)解,結合函數(shù)自變量取值范圍解得,解,結合函數(shù)自變量取值范圍解得所以當20≤x≤60時,即共41天,每天銷售利潤不低于4800元.【點睛】本題主要考查了1.二次函數(shù)和一次函數(shù)的應用(銷售問題);2.由實際問題列函數(shù)關系式;3.二次函數(shù)和一次函數(shù)的性質;4.分類思想的應用.21、(1)A(﹣4,0),B(2,0);(2)△ACP最大面積是4.【解析】

(1)令y=0,得到關于x的一元二次方程﹣x2﹣x+4=0,解此方程即可求得結果;(2)先求出直線AC解析式,再作PD⊥AO交AC于D,設P(t,﹣t2﹣t+4),可表示出D點坐標,于是線段PD可用含t的代數(shù)式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP關于t的函數(shù)關系式,繼而可求出△ACP面積的最大值.【詳解】(1)解:設y=0,則0=﹣x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D設AC解析式y(tǒng)=kx+b∴解得:∴AC解析式為y=x+4.設P(t,﹣t2﹣t+4)則D(t,t+4)∴PD=(﹣t2﹣t+4)﹣(t

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論