




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.關于二次函數,下列說法正確的是()A.圖像與軸的交點坐標為 B.圖像的對稱軸在軸的右側C.當時,的值隨值的增大而減小 D.的最小值為-32.如圖,正方形ABCD的頂點C、D在x軸上,A、B恰好在二次函數y=2x2﹣4的圖象上,則圖中陰影部分的面積之和為()A.6 B.8 C.10 D.123.如圖,半徑為3的⊙A經過原點O和點C(0,2),B是y軸左側⊙A優(yōu)弧上一點,則tan∠OBC為()A. B.2 C. D.4.如圖,保持△ABC的三個頂點的橫坐標不變,縱坐標都乘﹣1,畫出坐標變化后的三角形,則所得三角形與原三角形的關系是()A.關于x軸對稱B.關于y軸對稱C.將原圖形沿x軸的負方向平移了1個單位D.將原圖形沿y軸的負方向平移了1個單位5.如圖,反比例函數y=與y=的圖象上分別有一點A,B,且AB∥x軸,AD⊥x軸于D,BC⊥x軸于C,若矩形ABCD的面積為8,則b﹣a=()A.8 B.﹣8 C.4 D.﹣46.如圖,在Rt△ABC中,CD是斜邊AB上的高,∠A≠45°,則下列比值中不等于cosA的是()A. B. C. D.7.若二次函數的圖象與軸有兩個交點,坐標分別是(x1,0),(x2,0),且.圖象上有一點在軸下方,則下列判斷正確的是()A. B. C. D.8.如圖是由4個大小相同的小正方體擺成的幾何體,它的左視圖是()A. B. C. D.9.如圖,A、B兩點在雙曲線y=上,分別經過A、B兩點向軸作垂線段,已知S陰影=1,則S1+S2=()A.3 B.4 C.5 D.610.下列兩個圖形:①兩個等腰三角形;②兩個直角三角形;③兩個正方形;④兩個矩形;⑤兩個菱形;⑥兩個正五邊形.其中一定相似的有()A.2組B.3組C.4組D.5組二、填空題(每小題3分,共24分)11.將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線,若直線y=x+b與這兩條拋物線共有3個公共點,則b的取值范圍為_____.12.如圖,在△ABC中,AC=4,將△ABC繞點C按逆時針旋轉30°得到△FGC,則圖中陰影部分的面積為_____.13.若點P(m,-2)與點Q(3,n)關于原點對稱,則=______.14.小麗生日那天要照全家福,她和爸爸、媽媽隨意排成一排,則小麗站在中間的概率是________.15.將拋物線向上平移3個單位長度,再向右平移2個單位長度,所得到的拋物線解析式為______.16.若關于的方程的一個根是1,則的值為______.17.等腰Rt△ABC中,斜邊AB=12,則該三角形的重心與外心之間的距離是_____.18.已知二次根式有意義,則滿足條件的的最大值是______.三、解答題(共66分)19.(10分)如圖,二次函數y=x2+bx+c的圖象與x軸交于A,B兩點,與y軸交于點C,且關于直線x=1對稱,點A的坐標為(﹣1,0).(1)求二次函數的表達式;(2)連接BC,若點P在y軸上時,BP和BC的夾角為15°,求線段CP的長度;(3)當a≤x≤a+1時,二次函數y=x2+bx+c的最小值為2a,求a的值.20.(6分)如圖是一副撲克牌中的三張牌,將它們正面向下洗均勻,甲同學從中隨機抽取一張牌后放回,乙同學再從中隨機抽取一張牌,用樹狀圖(或列表)的方法,求抽出的兩張牌中,牌面上的數字都是偶數的概率.21.(6分)如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E,(1)求證:CD為⊙O的切線;(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結果保留π)22.(8分)如圖,已知矩形ABCD.在線段AD上作一點P,使∠DPC=∠BPC.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)23.(8分)如圖,AB是⊙O的直徑,弦CD⊥AB于點H,點F是上一點,連接AF交CD的延長線于點E.(1)求證:△AFC∽△ACE;(2)若AC=5,DC=6,當點F為的中點時,求AF的值.24.(8分)(1)計算:(2)先化簡,再求值:,其中m滿足一元二次方程.25.(10分)已知拋物線的頂點為,且過點.直線與軸相交于點.(1)求該拋物線的解析式;(2)以線段為直徑的圓與射線相交于點,求點的坐標.26.(10分)如圖1,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點.(1)求拋物線的函數表達式;(2)若點P是位于直線BC上方拋物線上的一個動點,求△BPC面積的最大值;(3)若點D是y軸上的一點,且以B,C,D為頂點的三角形與相似,求點D的坐標;(4)若點E為拋物線的頂點,點F(3,a)是該拋物線上的一點,在軸、軸上分別找點M、N,使四邊形EFMN的周長最小,求出點M、N的坐標.
參考答案一、選擇題(每小題3分,共30分)1、D【解析】分析:根據題目中的函數解析式可以判斷各個選項中的結論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當x=0時,y=-1,故選項A錯誤,該函數的對稱軸是直線x=-1,故選項B錯誤,當x<-1時,y隨x的增大而減小,故選項C錯誤,當x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數的性質、二次函數的最值,解答本題的關鍵是明確題意,利用二次函數的性質解答.2、B【分析】根據拋物線和正方形的對稱性求出OD=OC,并判斷出S陰影=S矩形BCOE,設點B的坐標為(n,2n)(n>0),把點B的坐標代入拋物線解析式求出n的值得到點B的坐標,然后求解即可.【詳解】解:∵四邊形ABCD為正方形,拋物線y=2x2﹣4和正方形都是軸對稱圖形,且y軸為它們的公共對稱軸,∴OD=OC=,S陰影=S矩形BCOE,設點B的坐標為(n,2n)(n>0),∵點B在二次函數y=2x2﹣4的圖象上,∴2n=2n2﹣4,解得,n1=2,n2=﹣1(舍負),∴點B的坐標為(2,4),∴S陰影=S矩形BCOE=2×4=1.故選:B.【點睛】此題考查的是拋物線和正方形的對稱性的應用、求二次函數上點的坐標和矩形的面積,掌握拋物線和正方形的對稱性、求二次函數上點的坐標和矩形的面積公式是解決此題的關鍵.3、C【解析】試題分析:連結CD,可得CD為直徑,在Rt△OCD中,CD=6,OC=2,根據勾股定理求得OD=4所以tan∠CDO=,由圓周角定理得,∠OBC=∠CDO,則tan∠OBC=,故答案選C.考點:圓周角定理;銳角三角函數的定義.4、A【分析】根據“關于x軸對稱的點,橫坐標相同,縱坐標互為相反數”,可知所得的三角形與原三角形關于x軸對稱.【詳解】解:∵縱坐標乘以﹣1,∴變化前后縱坐標互為相反數,又∵橫坐標不變,∴所得三角形與原三角形關于x軸對稱.故選:A.【點睛】本題考查平面直角坐標系中對稱點的規(guī)律.解題關鍵是掌握好對稱點的坐標規(guī)律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數.5、A【分析】根據反比例函數系數k的幾何意義得到|a|=S矩形ADOE,|b|=S矩形BCOE,進而得到|b|+|a|=8,然后根據a<0,b>0可得答案.【詳解】解:如圖,∵AB∥x軸,AD⊥x軸于D,BC⊥x軸于C,∴|a|=S矩形ADOE,|b|=S矩形BCOE,∵矩形ABCD的面積為8,∴S矩形ABCD=S矩形ADOE+S矩形BCOE=8,∴|b|+|a|=8,∵反比例函數y=在第二象限,反比例函數y=在第一象限,∴a<0,b>0,∴|b|+|a|=b﹣a=8,故選:A.【點睛】本題考查了反比例函數y=(k≠0)的系數k的幾何意義:從反比例函數y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標軸所圍成的矩形面積為|k|.6、A【解析】根據垂直定義證出∠A=∠DCB,然后根據余弦定義可得答案.【詳解】解:∵CD是斜邊AB上的高,∴∠BDC=90°,∴∠B+∠DCB=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠A=∠DCB,∴cosA=故選A.【點睛】考查了銳角函數定義,關鍵是掌握余弦=鄰邊:斜邊.7、D【分析】根據拋物線與x軸有兩個不同的交點,根的判別式△>0,再分a>0和a<0兩種情況對C、D選項討論即可得解.【詳解】A、二次函數y=ax2+bx+c(a≠0)的圖象與x軸有兩個交點無法確定a的正負情況,故本選項錯誤;B、∵x1<x2,∴△=b2-4ac>0,故本選項錯誤;C、若a>0,則x1<x0<x2,若a<0,則x0<x1<x2或x1<x2<x0,故本選項錯誤;D、若a>0,則x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,則(x0-x1)與(x0-x2)同號,∴a(x0-x1)(x0-x2)<0,綜上所述,a(x0-x1)(x0-x2)<0正確,故本選項正確.8、C【分析】根據左視圖即從物體的左面觀察得得到的視圖,進而得出答案.【詳解】如圖所示,該幾何體的左視圖是:.故選C.【點睛】此題主要考查了幾何體的三視圖;掌握左視圖是從幾何體左面看得到的平面圖形是解決本題的關鍵.9、D【分析】欲求S1+S1,只要求出過A、B兩點向x軸、y軸作垂線段與坐標軸所形成的矩形的面積即可,而矩形面積為雙曲線y=的系數k,由此即可求出S1+S1.【詳解】∵點A、B是雙曲線y=上的點,分別經過A、B兩點向x軸、y軸作垂線段,
則根據反比例函數的圖象的性質得兩個矩形的面積都等于|k|=4,
∴S1+S1=4+4-1×1=2.
故選D.10、A【解析】試題解析:①不相似,因為沒有指明相等的角或成比例的邊;②不相似,因為只有一對角相等,不符合相似三角形的判定;③相似,因為其四個角均相等,四條邊都相等,符合相似的條件;④不相似,雖然其四個角均相等,因為沒有指明邊的情況,不符合相似的條件;⑤不相似,因為菱形的角不一定對應相等,不符合相似的條件;⑥相似,因為兩正五邊形的角相等,對應邊成比例,符合相似的條件;所以正確的有③⑥.故選A.二、填空題(每小題3分,共24分)11、0<b<【分析】畫出圖象,利用圖象法解決即可.【詳解】解:將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線為y=﹣x2+4x(0≤x≤4)畫出函數如圖,由圖象可知,當直線y=x+b經過原點時有兩個公共點,此時b=0,解,整理得x2﹣3x+b=0,若直線y=x+b與這兩條拋物線共有3個公共點,則△=9﹣4b>0,解得所以,當0<b<時,直線y=x+b與這兩條拋物線共有3個公共點,故答案為.【點睛】本題考查了二次函數圖像的折疊問題,解決本題的關鍵是能夠根據題意畫出二次函數折疊后的圖像,掌握二次函數與一元二次方程的關系.12、【解析】根據旋轉的性質可知△FGC的面積=△ABC的面積,觀察圖形可知陰影部分的面積就是扇形CAF的面積.【詳解】解:由題意得,△FGC的面積=△ABC的面積,∠ACF=30o,AC=4,由圖形可知,陰影部分的面積=△FGC的面積+扇形CAF的面積﹣△ABC的面積,∴陰影部分的面積=扇形CAF的面積=.故答案為:.【點睛】本題考查了旋轉的性質,不規(guī)則圖形及扇形的面積計算.13、-1【分析】根據坐標的對稱性求出m,n的值,故可求解.【詳解】依題意得m=-3,n=2∴=故填:-1.【點睛】此題主要考查代數式求值,解題的關鍵是熟知直角坐標系的坐標特點.14、【分析】先利用樹狀圖展示所有6種等可能的結果數,再找出小麗恰好排在中間的結果數,然后根據概率公式求解.【詳解】解:畫樹狀圖為:共有種等可能的結果數,其中小麗站在中間的結果數為,所以小麗站在中間的概率.故答案為:.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.15、【分析】根據“左加右減、上加下減”的原則進行解答即可.【詳解】解:將拋物線y=2x2向上平移3個單位長度,再向右平移2個單位長度后,得到的拋物線的解析式為,
故答案為:【點睛】本題考查的是二次函數的圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.16、-6【分析】把x=1代入原方程就可以得到一個關于k的方程,解這個方程即可求出k的值.【詳解】把代入方程得到,解得.故答案為:?6.【點睛】本題考查了一元二次方程的解,將方程的根代入并求值是解題的關鍵.17、1.【分析】畫出圖形,找到三角形的重心與外心,利用重心和外心的性質求距離即可.【詳解】如圖,點D為三角形外心,點I為三角形重心,DI為所求.∵直角三角形的外心是斜邊的中點,∴CD=AB=6,∵I是△ABC的重心,∴DI=CD=1,故答案為:1.【點睛】本題主要考查三角形的重心和外心,能夠掌握三角形的外心和重心的性質是解題的關鍵.18、【分析】先根據二次根式有意義的條件列出關于x的不等式,求出x的取值范圍即可求出x的最大值【詳解】∵二次根式有意義;∴3-4x≥0,解得x≤,∴x的最大值為;故答案為.【點睛】本題考查的是二次根式有意義的條件,熟知二次根式中的被開方數是非負數是解答此題的關鍵.三、解答題(共66分)19、(1)y=x2﹣2x﹣3;(2)CP的長為3﹣或3﹣3;(3)a的值為1﹣或2+.【解析】(1)先根據題意得出點B的坐標,再利用待定系數法求解可得;
(2)分點P在點C上方和下方兩種情況,先求出∠OBP的度數,再利用三角函數求出OP的長,從而得出答案;
(3)分對稱軸x=1在a到a+1范圍的右側、中間和左側三種情況,結合二次函數的性質求解可得.【詳解】(1)∵點A(﹣1,0)與點B關于直線x=1對稱,∴點B的坐標為(3,0),代入y=x2+bx+c,得:,解得,所以二次函數的表達式為y=x2﹣2x﹣3;(2)如圖所示:由拋物線解析式知C(0,﹣3),則OB=OC=3,∴∠OBC=45°,若點P在點C上方,則∠OBP=∠OBC﹣∠PBC=30°,∴OP=OBtan∠OBP=3×=,∴CP=3﹣;若點P在點C下方,則∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OBtan∠OBP′=3×=3,∴CP=3﹣3;綜上,CP的長為3﹣或3﹣3;(3)若a+1<1,即a<0,則函數的最小值為(a+1)2﹣2(a+1)﹣3=2a,解得a=1﹣(正值舍去);若a<1<a+1,即0<a<1,則函數的最小值為1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,則函數的最小值為a2﹣2a﹣3=2a,解得a=2+(負值舍去);綜上,a的值為1﹣或2+.【點睛】本題是二次函數的綜合問題,解題的關鍵是掌握待定系數法求函數解析式、三角函數的運用、二次函數的圖象與性質及分類討論思想的運用.20、【解析】畫樹狀圖展示所有9種等可能的結果數,再找出兩次抽取的牌上的數字都是偶數的結果數,然后根據概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結果數,其中兩次抽取的牌上的數字都是偶數的結果數為2,所以兩次抽取的牌上的數字都是偶數的概率==.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.21、(1)見解析;(2)【分析】(1)連接OD,由BC是⊙O的切線,可得∠ABC=90°,由CD=CB,OB=OD,易證得∠ODC=∠ABC=90°,即可證得CD為⊙O的切線.(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的長,∠BOD的度數,又由,即可求得答案.【詳解】解:(1)證明:連接OD,∵BC是⊙O的切線,∴∠ABC=90°.∵CD=CB,∴∠CBD=∠CDB.∵OB=OD,∴∠OBD=∠ODB.∴∠ODC=∠ABC=90°,即OD⊥CD.∵點D在⊙O上,∴CD為⊙O的切線.(2)在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=.∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴.22、詳見解析【分析】以為圓心,為半徑畫弧,以為直徑畫弧,兩弧交于點,連接并延長交于點,利用全等三角形和角平分線的判定和性質可得.【詳解】解:如圖,即為所作圖形:∠DPC=∠BPC.【點睛】本題是作圖—復雜作圖,作線段垂直平分線,涉及到角平分線的判定和性質,全等三角形的判定和性質,難度中等.23、(1)見解析;(2)【分析】(1)根據條件得出=,推出∠AFC=∠ACD,結合公共角得出三角形相似;(2)根據已知條件證明△ACF≌△DEF,得出AC=DE,利用勾股定理計算出AE的長度,再根據(1)中△AFC∽△ACE,得出=,從而計算出AF的長度.【詳解】(1)∵CD⊥AB,AB是⊙O的直徑∴=∴∠AFC=∠ACD.∵在△ACF和△AEC中,∠AFC=∠ACD,∠CAF=∠EAC∴△AFC∽△ACE(2)∵四邊形ACDF內接于⊙O∴∠AFD+∠ACD=180°∵∠AFD+∠DFE=180°∴∠DFE=∠ACD∵∠AFC=∠ACD∴∠AFC=∠DFE.∵△AFC∽△ACE∴∠ACF=∠DEF.∵F為的中點∴AF=DF.∵在△ACF和△DEF中,∠ACF=∠DEF,∠AFC=∠DFE,AF=DF∴△ACF≌△DEF.∴AC=DE=1.∵CD⊥AB,AB是⊙O的直徑∴CH=DH=2.∴EH=8在Rt△AHC中,AH2=AC2-CH2=16,在Rt△AHE中,AE2=AH2+EH2=80,∴AE=4.∵△AFC∽△ACE∴=,即=,∴AF=.【點睛】本題屬于圓與相似三角形的綜合,涉及了圓內接四邊形的性質,勾股定理,等弧所對的圓周角相等,相似三角形的判定定理等,解題的關鍵是靈活運用所學知識,正確尋找全等三角形.24、(1)4;(2),【分析】(1)根據0次冪得1,負指數冪等于正指數冪的倒數,特殊三角函數值等,求出原式中各項的值,再根據實數的運算法則進行計算.(2)先依據因式分解再約分的方法算出除法部分,再根據異分母分式相加減的法則進行計算.【詳解】(1)解:原式===4(2)解:原式==m2-2m-8=0∴(m-4)(m+2)=0∴m1=4,m2=-2當時分母為0,舍去,∴m=4,∴原式=【點睛】本題考查實數運算及分式化簡求值,實數運算往往涉及0次冪,負指數,二次根式,絕對值等,掌握相應的法則是實數運算的關鍵;依據分式運算的順序及運算法則是分式化簡的關鍵,使分式有意義的取值是此題易錯點.25、(1);(2)或【分析】(1)先設出拋物線的頂點式,再將點A的坐標代入可得出結果;(2)先求出射線的解析式為,可設點P的坐標為(x,x).圓與射線OA相交于兩點,分兩種情況:①如圖1當時,構造和,再在直角三角形中利用勾股定理,列方程求解;②如圖2,當時,構造和,再在直角三角形中利用勾股定理,列方程求解.【詳解】解:(1)根據頂點設拋物線的解析式為:,代入點,得:,拋物線的解析式為:.設直線的解析式為:,分別代入和,得:,直線的解析式為:;(2)由(1)得:直線的解析式為,令,得,由題意可得射線的解析式為,點在射線上,則可設點,由圖可知滿足條件的點有兩個:①當時,構造和,可得:如圖1:由圖可得,,,.在Rt△PMD中,,在Rt△PBG中,,在Rt△BMH中,,點在以線段為直徑的圓上,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 筆譯服務合同(翻譯中心)-服務合同7篇
- 2025年龍巖貨運資格證考試真題
- 學校燈光改造工程合同
- 勞務派遣合同模本
- 工程分包合同總公司與分公司
- 英語基礎題試卷小學
- 小學課外英語試卷
- 配電控制設備市場分析及競爭策略分析報告
- 簡單的競標合同范本
- 分包木工材料合同范本
- 公對公打款合同
- 抗生素種類歸納分類
- 01-BUFR格式應用指南(試用版)
- 體育測量與評價04心肺功能的測量與評價
- 提高意識風險防范化解能力體會發(fā)言
- 2023年度危險作業(yè)安全監(jiān)護手冊
- 馬克思主義哲學十講
- 催化材料智慧樹知到答案章節(jié)測試2023年南開大學
- 中國故事英文版哪吒英文二篇
- GB/T 9846.1-2004膠合板第1部分:分類
- GB/T 32685-2016工業(yè)用精對苯二甲酸(PTA)
評論
0/150
提交評論