版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.2.設(shè),集合,則()A. B. C. D.3.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.144.在中所對的邊分別是,若,則()A.37 B.13 C. D.5.已知方程表示的曲線為的圖象,對于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個零點;③的最大值為;④若函數(shù)和圖象關(guān)于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④6.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.7.若函數(shù)滿足,且,則的最小值是()A. B. C. D.8.已知,,則()A. B. C. D.9.設(shè)m,n為直線,、為平面,則的一個充分條件可以是()A.,, B.,C., D.,10.設(shè)向量,滿足,,,則的取值范圍是A. B.C. D.11.已知展開式的二項式系數(shù)和與展開式中常數(shù)項相等,則項系數(shù)為()A.10 B.32 C.40 D.8012.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù).若在區(qū)間上恒成立.則實數(shù)的取值范圍是__________.14.已知函數(shù)在上單調(diào)遞增,則實數(shù)a值范圍為_________.15.已知實數(shù),滿足約束條件,則的最小值為______.16.有以下四個命題:①在中,的充要條件是;②函數(shù)在區(qū)間上存在零點的充要條件是;③對于函數(shù),若,則必不是奇函數(shù);④函數(shù)與的圖象關(guān)于直線對稱.其中正確命題的序號為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,滿足,,,,恰為等比數(shù)列的前3項.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和為;若對均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項公式;若不存在,請說明理由.18.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個條件中選一個,補充到上面問題中,并完成解答.)19.(12分)的內(nèi)角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.20.(12分)已知,.(1)解不等式;(2)若方程有三個解,求實數(shù)的取值范圍.21.(12分)已知等差數(shù)列滿足,公差,等比數(shù)列滿足,,.求數(shù)列,的通項公式;若數(shù)列滿足,求的前項和.22.(10分)設(shè)函數(shù).(Ⅰ)當(dāng)時,求不等式的解集;(Ⅱ)若函數(shù)的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關(guān)于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關(guān)于原點對稱,∴的圖象關(guān)于點成中心對稱.可排除A、D項.當(dāng)時,,∴B項不正確.故選:C【點睛】本題考查函數(shù)的性質(zhì)與識圖能力,一般根據(jù)四個選擇項來判斷對應(yīng)的函數(shù)性質(zhì),即可排除三個不符的選項,屬于中檔題.2、B【解析】
先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B【點睛】本題主要考查集合的化簡和運算,意在考查學(xué)生對這些知識的掌握水平和計算推理能力.3、A【解析】
設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.4、D【解析】
直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎(chǔ)題.5、C【解析】
分四類情況進行討論,然后畫出相對應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時,,此時不存在圖象;(2)當(dāng)時,,此時為實軸為軸的雙曲線一部分;(3)當(dāng)時,,此時為實軸為軸的雙曲線一部分;(4)當(dāng)時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調(diào)遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數(shù)圖象的對稱性可知③錯誤;對于④,函數(shù)和圖象關(guān)于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.6、A【解析】
分段求解函數(shù)零點,數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當(dāng)時與有兩個交點,故只需當(dāng)時,與有一個交點即可.若當(dāng)時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.7、A【解析】
由推導(dǎo)出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿足,,即,,,,即,,則,由基本不等式得,當(dāng)且僅當(dāng)時,等號成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當(dāng)時,取得最小值.故選:A.【點睛】本題考查代數(shù)式最值的計算,涉及對數(shù)運算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計算能力,屬于中等題.8、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎(chǔ)題.9、B【解析】
根據(jù)線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【詳解】對于A選項,當(dāng),,時,由于不在平面內(nèi),故無法得出.對于B選項,由于,,所以.故B選項正確.對于C選項,當(dāng),時,可能含于平面,故無法得出.對于D選項,當(dāng),時,無法得出.綜上所述,的一個充分條件是“,”故選:B【點睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.10、B【解析】
由模長公式求解即可.【詳解】,當(dāng)時取等號,所以本題答案為B.【點睛】本題考查向量的數(shù)量積,考查模長公式,準(zhǔn)確計算是關(guān)鍵,是基礎(chǔ)題.11、D【解析】
根據(jù)二項式定理通項公式可得常數(shù)項,然后二項式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時,常數(shù)項為又展開式的二項式系數(shù)和為由所以當(dāng)時,所以項系數(shù)為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎(chǔ)題.12、B【解析】
列出每一次循環(huán),直到計數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因為在區(qū)間上恒成立,解得即故答案為:【點睛】本題考查一元二次不等式及函數(shù)的綜合問題,屬于基礎(chǔ)題.14、【解析】
由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價于在時恒成立,∴,解得.故答案為:.【點睛】本題考查函數(shù)的單調(diào)性,解題關(guān)鍵是問題轉(zhuǎn)化為恒成立,利用換元法和二次函數(shù)的性質(zhì)易求解.15、【解析】
作出滿足約束條件的可行域,將目標(biāo)函數(shù)視為可行解與點的斜率,觀察圖形斜率最小在點B處,聯(lián)立,解得點B坐標(biāo),即可求得答案.【詳解】作出滿足約束條件的可行域,該目標(biāo)函數(shù)視為可行解與點的斜率,故由題可知,聯(lián)立得,聯(lián)立得所以,故所以的最小值為故答案為:【點睛】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問題,屬于簡單題.16、①【解析】
由三角形的正弦定理和邊角關(guān)系可判斷①;由零點存在定理和二次函數(shù)的圖象可判斷②;由,結(jié)合奇函數(shù)的定義,可判斷③;由函數(shù)圖象對稱的特點可判斷④.【詳解】解:①在中,,故①正確;②函數(shù)在區(qū)間上存在零點,比如在存在零點,但是,故②錯誤;③對于函數(shù),若,滿足,但可能為奇函數(shù),故③錯誤;④函數(shù)與的圖象,可令,即,即有和的圖象關(guān)于直線對稱,即對稱,故④錯誤.故答案為:①.【點睛】本題主要考查函數(shù)的零點存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(2),(2),的最大整數(shù)是2.(3)存在,【解析】
(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因為,,為等比數(shù)列,所以,化簡計算得,,從而得到數(shù)列的通項公式,再計算出,,,從而可求出數(shù)列的通項公式;(2)令,化簡計算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個可看成一個數(shù)列的前項和,再寫出其前()項和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當(dāng)時,,即當(dāng)時,①②①-②得,整理得,又因為各項均為正數(shù)的數(shù)列.故是從第二項的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項,故,解得.又,故,因為也成立.故是以為首項,2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項,故是以為首項,公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對均滿足,只要的最小值大于即可因為的最小值為,所以,所以的最大整數(shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點睛】此題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,最值,恒成立問題,考查了推理能力與計算能力,屬于中檔題.18、見解析【解析】
選擇①時:,,計算,根據(jù)正弦定理得到,計算面積得到答案;選擇②時,,,故,為鈍角,故無解;選擇③時,,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計算面積得到答案.【詳解】選擇①時:,,故.根據(jù)正弦定理:,故,故.選擇②時,,,故,為鈍角,故無解.選擇③時,,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.【點睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.19、(1)(2)【解析】
(1)利用余弦定理可求,從而得到的值.(2)利用誘導(dǎo)公式和正弦定理化簡題設(shè)中的邊角關(guān)系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因為,所以.(2)由,得.由正弦定理,得,因為,所以.又因,所以.所以的面積.【點睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.20、(1);(2).【解析】
(1)對分三種情況討論,分別去掉絕對值符號,然后求解不等式組,再求并集即可得結(jié)果;(2).作出函數(shù)的圖象,當(dāng)直線與函數(shù)的圖象有三個公共點時,方程有三個解,由圖可得結(jié)果.【詳解】(1)不等式,即為.當(dāng)時,即化為,得,此時不等式的解集為,當(dāng)時,即化為,解得,此時不等式的解集為.綜上,不等式的解集為.(2)即.作出函數(shù)的圖象如圖所示,當(dāng)直線與函數(shù)的圖象有三個公共點時,方程有三個解,所以.所以實數(shù)的取值范圍是.【點睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.21、,;.【解析】
由,公差,有,,成等比數(shù)列,所以,解得.進而求出數(shù)列,的通項公式;當(dāng)時,由,所以,當(dāng)時,由,,可得,進而求出前項和.【詳解】解:由題意知,,公差,有1,,成等比數(shù)列,所以,解得.所以數(shù)列的通項公式.?dāng)?shù)列的公比,其通項公式.當(dāng)時,由,所以.當(dāng)時,由,,兩式相減得,所以.故所以的前項和,.又時,,也符合上式,故.【點睛】本題主要考查等差數(shù)列和等比數(shù)列的概念,通項公式,前項和公式的應(yīng)用等基礎(chǔ)知識;考查運算求解能力,方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《兒童的營養(yǎng)》課件
- 《房地產(chǎn)銷售管理》課件
- 《變質(zhì)量動量定理》課件
- 廢棄資源的綜合利用技術(shù)與水資源管理研究考核試卷
- 城市綠化管理的濕地公園與自然保護區(qū)考核試卷
- 蘇州科技大學(xué)天平學(xué)院《企業(yè)戰(zhàn)略管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 軟件測試年度工作總結(jié)
- 營銷投放年終總結(jié)
- 生物競賽答辯
- 信息系統(tǒng)的數(shù)據(jù)科學(xué)與數(shù)據(jù)分析考核試卷
- AQ/T 2061-2018 金屬非金屬地下礦山防治水安全技術(shù)規(guī)范(正式版)
- 醫(yī)院患者輸液泵使用操作并發(fā)癥的預(yù)防及處理流程
- 金融法律服務(wù)行業(yè)研究報告
- 地下墻體混凝土澆筑
- 愛國主義教育模板下載
- 工業(yè)園區(qū)風(fēng)險分析
- 重癥醫(yī)學(xué)科主任述職報告
- 中國特色社會主義法律體系課件
- 高中數(shù)學(xué)奧賽輔導(dǎo)教材(共十講)
- 國開一體化平臺04633《納稅實務(wù)》形考任務(wù)(1-4)試題及答案
- 臨城興業(yè)礦產(chǎn)資源有限公司閆家莊鐵礦礦山地質(zhì)環(huán)境保護與土地復(fù)墾方案
評論
0/150
提交評論