




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間2.展開項中的常數(shù)項為A.1 B.11 C.-19 D.513.以,為直徑的圓的方程是A. B.C. D.4.若復(fù)數(shù)為虛數(shù)單位在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,則實數(shù)a為()A. B.2 C. D.5.設(shè),則,則()A. B. C. D.6.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.7.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.8.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.9.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準(zhǔn)線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.10.已知雙曲線的左、右焦點分別為,,P是雙曲線E上的一點,且.若直線與雙曲線E的漸近線交于點M,且M為的中點,則雙曲線E的漸近線方程為()A. B. C. D.11.設(shè)為定義在上的奇函數(shù),當(dāng)時,(為常數(shù)),則不等式的解集為()A. B. C. D.12.已知數(shù)列的前n項和為,,且對于任意,滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,所有的奇數(shù)次冪項的系數(shù)和為-64,則實數(shù)的值為__________.14.若復(fù)數(shù)(是虛數(shù)單位),則________15.已知向量,且向量與的夾角為_______.16.設(shè)滿足約束條件,則的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標(biāo)系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.18.(12分)如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值19.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),直線經(jīng)過點且傾斜角為.(1)求曲線的極坐標(biāo)方程和直線的參數(shù)方程;(2)已知直線與曲線交于,滿足為的中點,求.20.(12分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點.(1)證明:平面(2)若,求二面角的余弦值.21.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以坐標(biāo)原點為極點、軸的非負半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)若點在直線上,求直線的極坐標(biāo)方程;(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.22.(10分)已知函數(shù)f(x)ax﹣lnx(a∈R).(1)若a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)g(x)=f(x)1,若函數(shù)g(x)在上有兩個零點,求實數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時的導(dǎo)數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點值分別看作對應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當(dāng)且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題2、B【解析】
展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數(shù)項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數(shù)項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質(zhì),即展開式中每一項是由每個括號各出一項相乘組合而成的.3、A【解析】
設(shè)圓的標(biāo)準(zhǔn)方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,由題意得圓心為,的中點,根據(jù)中點坐標(biāo)公式可得,,又,所以圓的標(biāo)準(zhǔn)方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標(biāo)準(zhǔn)方程,建立方程組,屬于基礎(chǔ)題.4、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,,即.故選D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.5、A【解析】
根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數(shù)的運算,屬于中檔題.6、D【解析】
根據(jù)為等腰三角形,可求出點P的坐標(biāo),又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.7、D【解析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎(chǔ)題8、D【解析】
由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構(gòu)造方程求得結(jié)果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關(guān)鍵是明確直線傾斜角與斜率的關(guān)系;易錯點是忽略方程表示雙曲線對于的范圍的要求.9、D【解析】
根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設(shè)雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質(zhì),考查轉(zhuǎn)化思想,考查計算能力,屬于中檔題.10、C【解析】
由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點P一定在左支上.由及,得,,再結(jié)合M為的中點,得,又因為OM是的中位線,又,且,從而直線與雙曲線的左支只有一個交點.在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點三角形等知識,是一道中檔題.11、D【解析】
由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【詳解】因為在上是奇函數(shù).所以,解得,所以當(dāng)時,,且時,單調(diào)遞增,所以在上單調(diào)遞增,因為,故有,解得.故選:D.【點睛】本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學(xué)生對函數(shù)性質(zhì)的靈活運用能力,是一道中檔題.12、D【解析】
利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可.【詳解】當(dāng)時,.所以數(shù)列從第2項起為等差數(shù)列,,所以,,.,,.故選:.【點睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、3或-1【解析】
設(shè),分別令、,兩式相減即可得,即可得解.【詳解】設(shè),令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.【點睛】本題考查了二項式定理的應(yīng)用,考查了運算能力,屬于中檔題.14、【解析】
直接根據(jù)復(fù)數(shù)的代數(shù)形式四則運算法則計算即可.【詳解】,.【點睛】本題主要考查復(fù)數(shù)的代數(shù)形式四則運算法則的應(yīng)用.15、1【解析】
根據(jù)向量數(shù)量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點睛】本題主要考查平面向量的數(shù)量積的定義,屬于基礎(chǔ)題.16、【解析】
由題意畫出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,數(shù)形結(jié)合即可得到的最值,即可得解.【詳解】由題意畫出可行域,如圖:轉(zhuǎn)化目標(biāo)函數(shù)為,通過平移直線,數(shù)形結(jié)合可知:當(dāng)直線過點A時,直線截距最大,z最?。划?dāng)直線過點C時,直線截距最小,z最大.由可得,由可得,當(dāng)直線過點時,;當(dāng)直線過點時,,所以.故答案為:.【點睛】本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)消去參數(shù),將圓的參數(shù)方程,轉(zhuǎn)化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標(biāo)方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因為曲線和相切,所以,即:;(2)設(shè),所以所以當(dāng)時,面積最大值為【點睛】本小題主要考查參數(shù)方程轉(zhuǎn)化為普通方程,考查直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程,考查利用參數(shù)的方法求三角形面積的最值,屬于中檔題.18、(1)證明見解析(2)【解析】
(1)要證明線面平行,需證明線線平行,取的中點,連接,根據(jù)條件證明,即;(2)以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,求兩個平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點,連接.∵,∴為的中點.又為的中點,∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,,,,,,,,.設(shè)平面的法向量為,則,即,令,得.設(shè)平面的法向量為,則,即,令,得.從而,故平面與平面所成銳二面角的余弦值為.【點睛】本題考查線面平行的證明和空間坐標(biāo)法解決二面角的問題,意在考查空間想象能力,推理證明和計算能力,屬于中檔題型,證明線面平行,或證明面面平行時,關(guān)鍵是證明線線平行,所以做輔助線或證明時,需考慮構(gòu)造中位線或平行四邊形,這些都是證明線線平行的常方法.19、(1),;(2).【解析】
(1)由曲線的參數(shù)方程消去參數(shù)可得曲線的普通方程,由此可求曲線的極坐標(biāo)方程;直接利用直線的傾斜角以及經(jīng)過的點求出直線的參數(shù)方程即可;(2)將直線的參數(shù)方程,代入曲線的普通方程,整理得,利用韋達定理,根據(jù)為的中點,解出即可.【詳解】(1)由(為參數(shù))消去參數(shù),可得,即,已知曲線的普通方程為,,,,即,曲線的極坐標(biāo)方程為,直線經(jīng)過點,且傾斜角為,直線的參數(shù)方程:(為參數(shù),).(2)設(shè)對應(yīng)的參數(shù)分別為,.將直線的參數(shù)方程代入并整理,得,,.又為的中點,,,,,即,,,,即,.【點睛】本題考查了圓的參數(shù)方程與極坐標(biāo)方程之間的互化以及直線參數(shù)方程的應(yīng)用,考查了計算能力,屬于中檔題.20、(1)詳見解析;(2).【解析】
(1)連接,由菱形的性質(zhì)以及中位線,得,由平面平面,且交線,得平面,故而,最后由線面垂直的判定得結(jié)論.(2)以為原點建平面直角坐標(biāo)系,求出平面平與平面的法向量,,最后求得二面角的余弦值為.【詳解】解:(1)連結(jié)∵,且是的中點,∴∵平面平面,平面平面,∴平面.∵平面,∴又為菱形,且為棱的中點,∴∴.又∵,平面∴平面.(2)由題意有,∵四邊形為菱形,且∴分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,設(shè),則設(shè)平面的法向量為由,得,令,得取平面的法向量為∴二面角為銳二面角,∴二面角的余弦值為【點睛】處理線面垂直問題時,需要學(xué)生對線面垂直的判定定理特別熟悉,運用幾何語言表示出來方才過關(guān),一定要在已知平面中找兩條相交直線與平面外的直線垂直,才可以證得線面垂直,其次考查了學(xué)生運用空間向量處理空間中的二面角問題,培養(yǎng)了學(xué)生的計算能力和空間想象力.21、(1)(2)【解析】
(1)利用消參法以及點求解出的普通方程,根據(jù)極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化求解出直線的極坐標(biāo)方程;(2)將的坐標(biāo)設(shè)為,利用點到直線的距離公式結(jié)合三角函數(shù)的有界性,求解出取最小值時對應(yīng)的值./r/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年魚類等水產(chǎn)冷凍項目投資可行性研究分析報告
- 2025-2030年中國塑料門窗塑料制品項目投資可行性研究分析報告
- 煤礦炭窯峪煤業(yè)有限公司重大安全風(fēng)險分析研判報告 ((無重大風(fēng)險))
- 2021-2026年中國男士香水行業(yè)深度評估及投資規(guī)劃建議報告
- 2025年針織時裝面料項目可行性研究報告
- PE管項目立項報告
- 中國生物藥行業(yè)市場調(diào)研及未來發(fā)展趨勢預(yù)測報告
- 2025年耐磨鋼精鑄件行業(yè)深度研究分析報告
- “十三五”重點項目-風(fēng)力發(fā)電項目節(jié)能評估報告(節(jié)能專)
- 2024-2030年中國低壓斷路器行業(yè)市場深度研究及發(fā)展趨勢預(yù)測報告
- 五年級下冊音樂課程綱要
- 食材配送、包裝、運輸、驗收、售后服務(wù)方案應(yīng)急預(yù)案
- 萬千教育學(xué)前讀懂兒童的思維:支持自主游戲中的圖式探索
- 產(chǎn)品外觀檢驗標(biāo)準(zhǔn)通用
- 中石化YC分公司易捷便利店市場營銷策略研究
- 醫(yī)院護理培訓(xùn)課件:《病區(qū)環(huán)境管理查房》
- 《小羊和蝴蝶》繪本故事
- 鋼筋工理論考試題庫及答案
- 大數(shù)據(jù)技術(shù)基礎(chǔ)及應(yīng)用教程(Linux+Hadoop+Spark) 習(xí)題答案
- 高等數(shù)學(xué)(新標(biāo)準(zhǔn)教材)高職PPT完整全套教學(xué)課件
- 人教A版選擇性6.2.1排列6.2.2排列數(shù)課件(20張)
評論
0/150
提交評論