2023學(xué)年河南省南陽(yáng)、信陽(yáng)等六市高考沖刺數(shù)學(xué)模擬試題(含解析)_第1頁(yè)
2023學(xué)年河南省南陽(yáng)、信陽(yáng)等六市高考沖刺數(shù)學(xué)模擬試題(含解析)_第2頁(yè)
2023學(xué)年河南省南陽(yáng)、信陽(yáng)等六市高考沖刺數(shù)學(xué)模擬試題(含解析)_第3頁(yè)
2023學(xué)年河南省南陽(yáng)、信陽(yáng)等六市高考沖刺數(shù)學(xué)模擬試題(含解析)_第4頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若,且,則的取值范圍為()A. B. C. D.2.復(fù)數(shù)滿(mǎn)足,則復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.過(guò)拋物線(xiàn)的焦點(diǎn)F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線(xiàn)上的一動(dòng)點(diǎn),,若,則的最小值是()A.1 B.2 C.3 D.44.如圖是國(guó)家統(tǒng)計(jì)局于2020年1月9日發(fā)布的2018年12月到2019年12月全國(guó)居民消費(fèi)價(jià)格的漲跌幅情況折線(xiàn)圖.(注:同比是指本期與同期作對(duì)比;環(huán)比是指本期與上期作對(duì)比.如:2019年2月與2018年2月相比較稱(chēng)同比,2019年2月與2019年1月相比較稱(chēng)環(huán)比)根據(jù)該折線(xiàn)圖,下列結(jié)論錯(cuò)誤的是()A.2019年12月份,全國(guó)居民消費(fèi)價(jià)格環(huán)比持平B.2018年12月至2019年12月全國(guó)居民消費(fèi)價(jià)格環(huán)比均上漲C.2018年12月至2019年12月全國(guó)居民消費(fèi)價(jià)格同比均上漲D.2018年11月的全國(guó)居民消費(fèi)價(jià)格高于2017年12月的全國(guó)居民消費(fèi)價(jià)格5.二項(xiàng)式展開(kāi)式中,項(xiàng)的系數(shù)為()A. B. C. D.6.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時(shí)間,采用分層抽樣的方法從高生和初中生中抽取一個(gè)容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.7.在中,,分別為,的中點(diǎn),為上的任一點(diǎn),實(shí)數(shù),滿(mǎn)足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時(shí),的值為()A.-1 B.1 C. D.8.已知數(shù)列對(duì)任意的有成立,若,則等于()A. B. C. D.9.已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線(xiàn)圖如圖所示:根據(jù)該折線(xiàn)圖可知,下列說(shuō)法錯(cuò)誤的是()A.該超市2018年的12個(gè)月中的7月份的收益最高B.該超市2018年的12個(gè)月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長(zhǎng)了90萬(wàn)元10.已知函數(shù),不等式對(duì)恒成立,則的取值范圍為()A. B. C. D.11.設(shè)m,n為直線(xiàn),、為平面,則的一個(gè)充分條件可以是()A.,, B.,C., D.,12.不等式的解集記為,有下面四個(gè)命題:;;;.其中的真命題是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為_(kāi)_________.14.若復(fù)數(shù)(是虛數(shù)單位),則________15.已知兩點(diǎn),,若直線(xiàn)上存在點(diǎn)滿(mǎn)足,則實(shí)數(shù)滿(mǎn)足的取值范圍是__________.16.若點(diǎn)在直線(xiàn)上,則的值等于______________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)()的圖象在處的切線(xiàn)為(為自然對(duì)數(shù)的底數(shù))(1)求的值;(2)若,且對(duì)任意恒成立,求的最大值.18.(12分)設(shè)函數(shù).(1)時(shí),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),設(shè)的最小值為,若恒成立,求實(shí)數(shù)t的取值范圍.19.(12分)的內(nèi)角,,的對(duì)邊分別為,,,其面積記為,滿(mǎn)足.(1)求;(2)若,求的值.20.(12分)如圖,在直角中,,通過(guò)以直線(xiàn)為軸順時(shí)針旋轉(zhuǎn)得到().點(diǎn)為斜邊上一點(diǎn).點(diǎn)為線(xiàn)段上一點(diǎn),且.(1)證明:平面;(2)當(dāng)直線(xiàn)與平面所成的角取最大值時(shí),求二面角的正弦值.21.(12分)已知函數(shù).⑴當(dāng)時(shí),求函數(shù)的極值;⑵若存在與函數(shù),的圖象都相切的直線(xiàn),求實(shí)數(shù)的取值范圍.22.(10分)某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線(xiàn)投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線(xiàn)可供選擇,生產(chǎn)線(xiàn)①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為15萬(wàn)元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬(wàn)元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬(wàn)元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元.生產(chǎn)線(xiàn)②:有a,b兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為14萬(wàn)元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬(wàn)元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬(wàn)元.(1)若選擇生產(chǎn)線(xiàn)①,求生產(chǎn)成本恰好為18萬(wàn)元的概率;(2)為最大限度節(jié)約生產(chǎn)成本,你會(huì)給工廠建議選擇哪條生產(chǎn)線(xiàn)?請(qǐng)說(shuō)明理由.

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【答案解析】分析:作出函數(shù)的圖象,利用消元法轉(zhuǎn)化為關(guān)于的函數(shù),構(gòu)造函數(shù)求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,即可得到結(jié)論.詳解:作出函數(shù)的圖象,如圖所示,若,且,則當(dāng)時(shí),得,即,則滿(mǎn)足,則,即,則,設(shè),則,當(dāng),解得,當(dāng),解得,當(dāng)時(shí),函數(shù)取得最小值,當(dāng)時(shí),;當(dāng)時(shí),,所以,即的取值范圍是,故選A.點(diǎn)睛:本題主要考查了分段函數(shù)的應(yīng)用,構(gòu)造新函數(shù),求解新函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性和最值是解答本題的關(guān)鍵,著重考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想方法,以及分析問(wèn)題和解答問(wèn)題的能力,試題有一定的難度,屬于中檔試題.2、B【答案解析】

設(shè),則,可得,即可得到,進(jìn)而找到對(duì)應(yīng)的點(diǎn)所在象限.【題目詳解】設(shè),則,,,所以復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)為,在第二象限.故選:B【答案點(diǎn)睛】本題考查復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在象限,考查復(fù)數(shù)的模,考查運(yùn)算能力.3、C【答案解析】

設(shè)直線(xiàn)AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當(dāng)Q,P,M三點(diǎn)共線(xiàn)時(shí),即可得答案.【題目詳解】根據(jù)題意,可知拋物線(xiàn)的焦點(diǎn)為,則直線(xiàn)AB的斜率存在且不為0,設(shè)直線(xiàn)AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線(xiàn)CD的方程為,同理,所以,所以.故.過(guò)點(diǎn)P作PM垂直于準(zhǔn)線(xiàn),M為垂足,則由拋物線(xiàn)的定義可得.所以,當(dāng)Q,P,M三點(diǎn)共線(xiàn)時(shí),等號(hào)成立.故選:C.【答案點(diǎn)睛】本題考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意取最值的條件.4、D【答案解析】

先對(duì)圖表數(shù)據(jù)的分析處理,再結(jié)簡(jiǎn)單的合情推理一一檢驗(yàn)即可【題目詳解】由折線(xiàn)圖易知A、C正確;2019年3月份及6月份的全國(guó)居民消費(fèi)價(jià)格環(huán)比是負(fù)的,所以B錯(cuò)誤;設(shè)2018年12月份,2018年11月份,2017年12月份的全國(guó)居民消費(fèi)價(jià)格分別為,由題意可知,,,則有,所以D正確.故選:D【答案點(diǎn)睛】此題考查了對(duì)圖表數(shù)據(jù)的分析處理能力及進(jìn)行簡(jiǎn)單的合情推理,屬于中檔題.5、D【答案解析】

寫(xiě)出二項(xiàng)式的通項(xiàng)公式,再分析的系數(shù)求解即可.【題目詳解】二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,得,故項(xiàng)的系數(shù)為.故選:D【答案點(diǎn)睛】本題主要考查了二項(xiàng)式定理的運(yùn)算,屬于基礎(chǔ)題.6、B【答案解析】

利用某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比計(jì)算即可.【題目詳解】由題意,,解得.故選:B.【答案點(diǎn)睛】本題考查簡(jiǎn)單隨機(jī)抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.7、D【答案解析】

根據(jù)三角形中位線(xiàn)的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時(shí),為的中點(diǎn),再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【題目詳解】如圖所示:因?yàn)槭恰鞯闹形痪€(xiàn),所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時(shí),即為的中點(diǎn)時(shí),等號(hào)成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【答案點(diǎn)睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.8、B【答案解析】

觀察已知條件,對(duì)進(jìn)行化簡(jiǎn),運(yùn)用累加法和裂項(xiàng)法求出結(jié)果.【題目詳解】已知,則,所以有,,,,兩邊同時(shí)相加得,又因?yàn)?,所?故選:【答案點(diǎn)睛】本題考查了求數(shù)列某一項(xiàng)的值,運(yùn)用了累加法和裂項(xiàng)法,遇到形如時(shí)就可以采用裂項(xiàng)法進(jìn)行求和,需要掌握數(shù)列中的方法,并能熟練運(yùn)用對(duì)應(yīng)方法求解.9、D【答案解析】

用收入減去支出,求得每月收益,然后對(duì)選項(xiàng)逐一分析,由此判斷出說(shuō)法錯(cuò)誤的選項(xiàng).【題目詳解】用收入減去支出,求得每月收益(萬(wàn)元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項(xiàng)說(shuō)法正確;月收益最低,B選項(xiàng)說(shuō)法正確;月總收益萬(wàn)元,月總收益萬(wàn)元,所以前個(gè)月收益低于后六個(gè)月收益,C選項(xiàng)說(shuō)法正確,后個(gè)月收益比前個(gè)月收益增長(zhǎng)萬(wàn)元,所以D選項(xiàng)說(shuō)法錯(cuò)誤.故選D.【答案點(diǎn)睛】本小題主要考查圖表分析,考查收益的計(jì)算方法,屬于基礎(chǔ)題.10、C【答案解析】

確定函數(shù)為奇函數(shù),且單調(diào)遞減,不等式轉(zhuǎn)化為,利用雙勾函數(shù)單調(diào)性求最值得到答案.【題目詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調(diào)遞減,不等式,即,結(jié)合函數(shù)的單調(diào)性可得,即,設(shè),,故單調(diào)遞減,故,當(dāng),即時(shí)取最大值,所以.故選:.【答案點(diǎn)睛】本題考查了根據(jù)函數(shù)單調(diào)性和奇偶性解不等式,參數(shù)分離求最值是解題的關(guān)鍵.11、B【答案解析】

根據(jù)線(xiàn)面垂直的判斷方法對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【題目詳解】對(duì)于A選項(xiàng),當(dāng),,時(shí),由于不在平面內(nèi),故無(wú)法得出.對(duì)于B選項(xiàng),由于,,所以.故B選項(xiàng)正確.對(duì)于C選項(xiàng),當(dāng),時(shí),可能含于平面,故無(wú)法得出.對(duì)于D選項(xiàng),當(dāng),時(shí),無(wú)法得出.綜上所述,的一個(gè)充分條件是“,”故選:B【答案點(diǎn)睛】本小題主要考查線(xiàn)面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.12、A【答案解析】

作出不等式組表示的可行域,然后對(duì)四個(gè)選項(xiàng)一一分析可得結(jié)果.【題目詳解】作出可行域如圖所示,當(dāng)時(shí),,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【答案點(diǎn)睛】此題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、18【答案解析】

根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對(duì)稱(chēng)性和單調(diào)區(qū)間的關(guān)系建立不等式,利用基本不等式求解即可.【題目詳解】解:①當(dāng)時(shí),,在區(qū)間上單調(diào)遞減,則,即,則.②當(dāng)時(shí),,函數(shù)開(kāi)口向上,對(duì)稱(chēng)軸為,因?yàn)樵趨^(qū)間上單調(diào)遞減,則,因?yàn)?則,整理得,又因?yàn)?則.所以即,所以當(dāng)且僅當(dāng)時(shí)等號(hào)成立.綜上所述,的最大值為18.故答案為:18【答案點(diǎn)睛】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.14、【答案解析】

直接根據(jù)復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則計(jì)算即可.【題目詳解】,.【答案點(diǎn)睛】本題主要考查復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則的應(yīng)用.15、【答案解析】

問(wèn)題轉(zhuǎn)化為求直線(xiàn)與圓有公共點(diǎn)時(shí),的取值范圍,利用數(shù)形結(jié)合思想能求出結(jié)果.【題目詳解】解:直線(xiàn),點(diǎn),,直線(xiàn)上存在點(diǎn)滿(mǎn)足,的軌跡方程是.如圖,直線(xiàn)與圓有公共點(diǎn),圓心到直線(xiàn)的距離:,解得.實(shí)數(shù)的取值范圍為.故答案為:.【答案點(diǎn)睛】本題主要考查直線(xiàn)方程、圓、點(diǎn)到直線(xiàn)的距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于中檔題.16、【答案解析】

根據(jù)題意可得,再由,即可得到結(jié)論.【題目詳解】由題意,得,又,解得,當(dāng)時(shí),則,此時(shí);當(dāng)時(shí),則,此時(shí),綜上,.故答案為:.【答案點(diǎn)睛】本題考查誘導(dǎo)公式和同角的三角函數(shù)的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)a=-1,b=1;(2)-1.【答案解析】(1)對(duì)求導(dǎo)得,根據(jù)函數(shù)的圖象在處的切線(xiàn)為,列出方程組,即可求出的值;(2)由(1)可得,根據(jù)對(duì)任意恒成立,等價(jià)于對(duì)任意恒成立,構(gòu)造,求出的單調(diào)性,由,,,,可得存在唯一的零點(diǎn),使得,利用單調(diào)性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對(duì)任意恒成立對(duì)任意恒成立對(duì)任意恒成立.令,則.由于,所以在上單調(diào)遞增.又,,,,所以存在唯一的,使得,且當(dāng)時(shí),,時(shí),.即在單調(diào)遞減,在上單調(diào)遞增.所以.又,即,∴.∴.∵,∴.又因?yàn)閷?duì)任意恒成立,又,∴.點(diǎn)睛:利用導(dǎo)數(shù)研究不等式恒成立或存在型問(wèn)題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.18、(1)的增區(qū)間為,減區(qū)間為;(2).【答案解析】

(1)求出函數(shù)的導(dǎo)數(shù),由于參數(shù)的范圍對(duì)導(dǎo)數(shù)的符號(hào)有影響,對(duì)參數(shù)分類(lèi),再研究函數(shù)的單調(diào)區(qū)間;(2)由(1)的結(jié)論,求出的表達(dá)式,由于恒成立,故求出的最大值,即得實(shí)數(shù)的取值范圍的左端點(diǎn).【題目詳解】解:(1)解:,當(dāng)時(shí),,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數(shù)的減區(qū)間為,增區(qū)間為;,因?yàn)椋裕?,令,則恒成立,由于,當(dāng)時(shí),,故函數(shù)在上是減函數(shù),所以成立;當(dāng)時(shí),若則,故函數(shù)在上是增函數(shù),即對(duì)時(shí),,與題意不符;綜上,為所求.【答案點(diǎn)睛】本題考查導(dǎo)數(shù)在最大值與最小值問(wèn)題中的應(yīng)用,求解本題關(guān)鍵是根據(jù)導(dǎo)數(shù)研究出函數(shù)的單調(diào)性,由最值的定義得出函數(shù)的最值,本題中第一小題是求出函數(shù)的單調(diào)區(qū)間,第二小題是一個(gè)求函數(shù)的最值的問(wèn)題,此類(lèi)題運(yùn)算量較大,轉(zhuǎn)化靈活,解題時(shí)極易因?yàn)樽冃闻c運(yùn)算出錯(cuò),故做題時(shí)要認(rèn)真仔細(xì).19、(1);(2)【答案解析】

(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進(jìn)而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達(dá)式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡(jiǎn),即可求得和,進(jìn)而由正弦定理確定,代入整式即可求解.【題目詳解】(1)因?yàn)?,所以由三角形面積公式及平面向量數(shù)量積運(yùn)算可得,所以.因?yàn)?,所?(2)因?yàn)?,所以由正弦定理代入化?jiǎn)可得,由(1),代入可得,展開(kāi)化簡(jiǎn)可得,根據(jù)輔助角公式化簡(jiǎn)可得.因?yàn)?,所以,所以,所以為等腰三角形,且,所?【答案點(diǎn)睛】本題考查了正弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,平面向量數(shù)量積的運(yùn)算,正弦和角公式及輔助角公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.20、(1)見(jiàn)解析;(2)【答案解析】

(1)先算出的長(zhǎng)度,利用勾股定理證明,再由已知可得,利用線(xiàn)面垂直的判定定理即可證明;(2)由(1)可得為直線(xiàn)與平面所成的角,要使其最大,則應(yīng)最小,可得為中點(diǎn),然后建系分別求出平面的法向量即可算得二面角的余弦值,進(jìn)一步得到正弦值.【題目詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標(biāo)原點(diǎn),以,,的方向?yàn)?,,軸的正方向,建立空間直角坐標(biāo)系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時(shí),即,點(diǎn)為中點(diǎn).,,,,,,,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,同理,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【答案點(diǎn)睛】本題考查線(xiàn)面垂直的判定定理以及利用向量法求二面角的正弦值,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.21、(1)當(dāng)時(shí),函數(shù)取得極小值為,無(wú)極大值;(2)【答案解析】試題分析:(1),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論