2023屆廣東省清遠(yuǎn)市數(shù)學(xué)九年級上冊期末統(tǒng)考模擬試題含解析_第1頁
2023屆廣東省清遠(yuǎn)市數(shù)學(xué)九年級上冊期末統(tǒng)考模擬試題含解析_第2頁
2023屆廣東省清遠(yuǎn)市數(shù)學(xué)九年級上冊期末統(tǒng)考模擬試題含解析_第3頁
2023屆廣東省清遠(yuǎn)市數(shù)學(xué)九年級上冊期末統(tǒng)考模擬試題含解析_第4頁
2023屆廣東省清遠(yuǎn)市數(shù)學(xué)九年級上冊期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.在平面直角坐標(biāo)系中,二次函數(shù)的圖象可能是()A. B. C. D.2.如圖,路燈距離地面8米,身高1.6米的小明站在距離燈的底部(點0)20米的A處,則小明的影長為()米.A.4 B.5 C.6 D.73.如圖,AB∥CD,點E在CA的延長線上.若∠BAE=40°,則∠ACD的大小為()A.150° B.140° C.130° D.120°4.如圖所示,AB∥CD,∠A=50°,∠C=27°,則∠AEC的大小應(yīng)為()A.23° B.70° C.77° D.80°5.下列幾何體中,同一個幾何體的主視圖與左視圖不同的是()A. B. C. D.6.如圖,在平面直角坐標(biāo)系xOy中,點A為(0,3),點B為(2,1),點C為(2,-3).則經(jīng)畫圖操作可知:△ABC的外心坐標(biāo)應(yīng)是()A. B. C. D.7.如圖,PA、PB分別與⊙O相切于A、B兩點,點C為⊙O上一點,連AC、BC,若∠P=80°,則的∠ACB度數(shù)為()A.40° B.50° C.60° D.80°8.把拋物線向右平移個單位,再向下平移個單位,即得到拋物線()A.y=-(x+2)2+3 B.y=-(x-2)2+3 C.y=-(x+2)2-3 D.y=-(x-2)2-39.如圖,在某監(jiān)測點B處望見一艘正在作業(yè)的漁船在南偏西15°方向的A處,若漁船沿北偏西75°方向以40海里/小時的速度航行,航行半小時后到達(dá)C處,在C處觀測到B在C的北偏東60°方向上,則B、C之間的距離為().A.20海里 B.10海里 C.20海里 D.30海里10.菱形的兩條對角線長分別為6,8,則它的周長是()A.5 B.10 C.20 D.2411.下面是投影屏上出示的搶答題,需要回答橫線上符號代表的內(nèi)容則回答正確的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB12.在中,,,若,則的長為()A. B. C. D.二、填空題(每題4分,共24分)13.在平面直角坐標(biāo)系中,已知、兩點,以坐標(biāo)原點為位似中心,相似比為,把線段縮小后得到線段,則的長度等于________.14.如圖,在平面直角坐標(biāo)系中,點A是x軸正半軸上一點,菱形OABC的邊長為5,且tan∠COA=,若函數(shù)的圖象經(jīng)過頂點B,則k的值為________.15.已知:如圖,在菱形ABCD中,F(xiàn)為邊AB的中點,DF與對角線AC交于點G,過G作GE⊥AD于點E,若AB=2,且∠1=∠2,則下列結(jié)論中一定成立的是_____(把所有正確結(jié)論的序號都填在橫線上).①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四邊形BFGC=﹣1.16.我區(qū)某校舉行冬季運動會,其中一個項目是乒乓球比賽,比賽為單循環(huán)制,即所有參賽選手彼此恰好比賽一場.記分規(guī)則是:每場比賽勝者得3分、負(fù)者得0分、平局各得1分.賽后統(tǒng)計,所有參賽者的得分總知為210分,且平局?jǐn)?shù)不超過比賽總場數(shù)的,本次友誼賽共有參賽選手__________人.17.如圖,已知中,,,,將繞點順時針旋轉(zhuǎn)得到,點、分別為、的中點,若點剛好落在邊上,則______.18.點(2,5)在反比例函數(shù)的圖象上,那么k=_____.三、解答題(共78分)19.(8分)小王同學(xué)在地質(zhì)廣場上放風(fēng)箏,如圖風(fēng)箏從處起飛,幾分鐘后便飛達(dá)處,此時,在延長線上處的小張同學(xué)發(fā)現(xiàn)自己的位置與風(fēng)箏和廣場邊旗桿的頂點在同一直線上,已知旗桿高為10米,若在處測得旗桿頂點的仰角為30?,處測得點的仰角為45?,若在處背向旗桿又測得風(fēng)箏的仰角為75?,繩子在空中視為一條線段,求繩子為多少米?(結(jié)果保留根號)20.(8分)小明按照列表、描點、連線的過程畫二次函數(shù)的圖象,下表與下圖是他所完成的部分表格與圖象,求該二次函數(shù)的解析式,并補全表格與圖象.21.(8分)一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同.(1)從箱子中任意摸出一個球是白球的概率是多少?(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖.22.(10分)如圖,折疊邊長為的正方形,使點落在邊上的點處(不與點,重合),點落在點處,折痕分別與邊、交于點、,與邊交于點.證明:(1);(2)若為中點,則;(3)的周長為.23.(10分)已知AD為⊙O的直徑,BC為⊙O的切線,切點為M,分別過A,D兩點作BC的垂線,垂足分別為B,C,AD的延長線與BC相交于點E.(1)求證:△ABM∽△MCD;(2)若AD=8,AB=5,求ME的長.24.(10分)己知:如圖,拋物線與坐標(biāo)軸分別交于點,點是線段上方拋物線上的一個動點,(1)求拋物線解析式:(2)當(dāng)點運動到什么位置時,的面積最大?25.(12分)已知關(guān)于x的一元二次方程x1=1(1-m)x-m1有兩個實數(shù)根為x1,x1.(1)求m的取值范圍;(1)設(shè)y=x1+x1,求當(dāng)m為何值時,y有最小值.26.如圖,在△ABC中,D為AB邊上一點,∠B=∠ACD.(1)求證:△ABC∽△ACD;(2)如果AC=6,AD=4,求DB的長.

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)二次函數(shù)圖像的特點可得.【詳解】解:二次函數(shù)與軸有兩個不同的交點,開口方向向上.故選:A.【點睛】本題考查了二次函數(shù)的圖象,解決本題的關(guān)鍵是二次函數(shù)的開口方向和與x軸的交點.2、B【分析】直接利用相似三角形的性質(zhì)得出,故,進而得出AM的長即可得出答案.【詳解】解:由題意可得:OC∥AB,則△MBA∽△MCO,∴,即解得:AM=1.故選:B.【點睛】此題主要考查了相似三角形的應(yīng)用,根據(jù)題意得出△MBA∽△MCO是解題關(guān)鍵.3、B【解析】試題分析:如圖,延長DC到F,則∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故選B.考點:1.平行線的性質(zhì);2.平角性質(zhì).4、C【分析】根據(jù)平行線的性質(zhì)可求解∠ABC的度數(shù),利用三角形的內(nèi)角和定理及平角的定義可求解.【詳解】解:∵AB∥CD,∠C=27°,∴∠ABC=∠C=27°,∵∠A=50°,∴∠AEB=180°﹣27°﹣50°=103°,∴∠AEC=180°﹣∠AEB=77°,故選:C.【點睛】本題主要考查平行線的性質(zhì),三角形的內(nèi)角和定理,掌握平行線的性質(zhì)是解題的關(guān)鍵.5、A【分析】主視圖、左視圖、俯視圖是分別從正面、左側(cè)面、上面看,得到的圖形,根據(jù)要求判斷每個立體圖形對應(yīng)視圖是否不同即可.【詳解】解:A.圓的主視圖是矩形,左視圖是圓,故兩個視圖不同,正確.B.正方體的主視圖與左視圖都是正方形,錯誤.C.圓錐的主視圖和俯視圖都是等腰三角形,錯誤.D.球的主視圖與左視圖都是圓,錯誤.故選:A【點睛】簡單幾何體的三視圖,此類型題主要看清題目要求,判斷的是哪種視圖即可.6、C【解析】外心在BC的垂直平分線上,則外心縱坐標(biāo)為-1.故選C.7、B【分析】先利用切線的性質(zhì)得∠OAP=∠OBP=90°,再利用四邊形的內(nèi)角和計算出∠AOB的度數(shù),然后根據(jù)圓周角定理計算∠ACB的度數(shù).【詳解】解:連接OA、OB,∵PA、PB分別與⊙O相切于A、B兩點,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣80°=100°,∴∠ACB=∠AOB=×100°=50°.故選:B.【點睛】本題考查圓的切線,關(guān)鍵在于牢記圓切線常用輔助線:連接切點與圓心.8、D【分析】根據(jù)二次函數(shù)圖象左加右減,上加下減的平移規(guī)律進行解答即可.【詳解】拋物線向右平移個單位,得:,再向下平移個單位,得:.故選:.【點睛】本題主要考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.9、C【分析】如圖,根據(jù)題意易求△ABC是等腰直角三角形,通過解該直角三角形來求BC的長度.【詳解】如圖,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB=60°,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC==,∴BC=20海里.故選C.考點:解直角三角形的應(yīng)用-方向角問題.10、C【分析】根據(jù)菱形的對角線互相垂直且平分這一性質(zhì)解題即可.【詳解】解:∵菱形的對角線互相垂直且平分,∴勾股定理求出菱形的邊長=5,∴菱形的周長=20,故選C.【點睛】本題考查了菱形對角線的性質(zhì),屬于簡單題,熟悉概念是解題關(guān)鍵.11、C【解析】根據(jù)圖形可知※代表CD,即可判斷D;根據(jù)三角形外角的性質(zhì)可得◎代表∠EFC,即可判斷A;利用等量代換得出▲代表∠EFC,即可判斷C;根據(jù)圖形已經(jīng)內(nèi)錯角定義可知@代表內(nèi)錯角.【詳解】延長BE交CD于點F,則∠BEC=∠EFC+∠C(三角形的外角等于與它不相鄰兩個內(nèi)角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(內(nèi)錯角相等,兩直線平行).故選C.【點睛】本題考查了平行線的判定,三角形外角的性質(zhì),比較簡單.12、A【解析】根據(jù)解直角三角形的三角函數(shù)解答即可【詳解】如圖,∵cos53°=,∴AB=故選A【點睛】此題考查解直角三角形的三角函數(shù)解,難度不大二、填空題(每題4分,共24分)13、【分析】已知A(6,2)、B(6,0)兩點則AB=2,以坐標(biāo)原點O為位似中心,相似比為,則A′B′:AB=2:2.即可得出A′B′的長度等于2.【詳解】∵A(6,2)、B(6,0),∴AB=2.又∵相似比為,∴A′B′:AB=2:2,∴A′B′=2.【點睛】本題主要考查位似的性質(zhì),位似比就是相似比.14、1【分析】作BD⊥x軸于點D,如圖,根據(jù)菱形的性質(zhì)和平行線的性質(zhì)可得∠BAD=∠COA,于是可得,在Rt△ABD中,由AB=5則可根據(jù)勾股定理求出BD和AD的長,進而可得點B的坐標(biāo),再把點B坐標(biāo)代入雙曲線的解析式即可求出k.【詳解】解:作BD⊥x軸于點D,如圖,∵菱形OABC的邊長為5,∴AB=OA=5,AB∥OC,∴∠BAD=∠COA,∴在Rt△ABD中,設(shè)BD=3x,AD=4x,則根據(jù)勾股定理得:AB=5x=5,解得:x=1,∴BD=3,AD=4,∴OD=9,∴點B的坐標(biāo)是(9,3),∵的圖象經(jīng)過頂點B,∴k=3×9=1.故答案為:1.【點睛】本題考查了菱形的性質(zhì)、解直角三角形、勾股定理和待定系數(shù)法求函數(shù)的解析式等知識,屬于常考題型,熟練應(yīng)用上述知識、正確求出點B的坐標(biāo)是解題的關(guān)鍵.15、①②③【分析】①由四邊形ABCD是菱形,得出對角線平分對角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS證得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出①正確;②由DF⊥AB,F(xiàn)為邊AB的中點,證得AD=BD,證出△ABD為等邊三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB?cos∠BAC,AG,求出AC,AG,即可得出②正確;③由勾股定理求出DF,由GE=tan∠2?ED求出GE,即可得出③正確;④由S四邊形BFGC=S△ABC﹣S△AGF求出數(shù)值,即可得出④不正確.【詳解】∵四邊形ABCD是菱形,∴∠FAG=∠EAG,AB=AD,BC∥AD,∴∠1=∠GAD.∵∠1=∠2,∴∠GAD=∠2,∴AG=GD.∵GE⊥AD,∴GE垂直平分AD,∴AE=ED.∵F為邊AB的中點,∴AF=AE,在△AFG和△AEG中,∵,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴①正確;連接BD交AC于點O.∵DF⊥AB,F(xiàn)為邊AB的中點,∴AFAB=1,AD=BD.∵AB=AD,∴AD=BD=AB,∴△ABD為等邊三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AO=2AB?cos∠BAC=2×22,AG,∴CG=AC﹣AG=2,∴CG=2GA,∴②正確;∵GE垂直平分AD,∴EDAD=1,由勾股定理得:DF,GE=tan∠2?ED=tan30°×1,∴DF+GECG,∴③正確;∵∠BAC=∠1=30°,∴△ABC的邊AC上的高等于AB的一半,即為1,F(xiàn)GAG,S四邊形BFGC=S△ABC﹣S△AGF211,∴④不正確.故答案為:①②③.【點睛】本題考查了菱形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、三角函數(shù)、線段垂直平分線的性質(zhì)、含30°角的直角三角形的性質(zhì)等知識;本題綜合性強,有一定難度.16、2【分析】所有場數(shù)中,設(shè)分出勝負(fù)有x場,平局y場,可知分出勝負(fù)的x場里,只有勝利一隊即3分,總得分為3x;平局里兩隊各得1分,總得分為2y;所以有3x+2y=1.又根據(jù)“平局?jǐn)?shù)不超過比賽場數(shù)的”可求出x與y之間的關(guān)系,進而得到滿足的9組非負(fù)整數(shù)解.又設(shè)有a人參賽,每人要與其余的(a-1)人比賽,即共a(a-1)場,但這樣每兩人之間是比賽了兩場的,所以單循環(huán)即場,即=x+y,找出x與y的9組解中滿足關(guān)于a的方程有正整數(shù)解,即求出a的值.【詳解】設(shè)所有比賽中分出勝負(fù)的有x場,平局y場,得:由①得:2y=1-3x由②得:2y≤x∴1-3x≤x解得:x≥,∵x、y均為非負(fù)整數(shù)∴,,,……,設(shè)參賽選手有a人,得:=x+y化簡得:a2-a-2(x+y)=0∵此關(guān)于a的一元二次方程有正整數(shù)解∴△=1+8(x+y)必須為平方數(shù)由得:1+8×(54+24)=625,為25的平方∴解得:a1=-12(舍去),a2=2∴共參賽選手有2人.故答案為:2.【點睛】本題考查了二元一次方程的應(yīng)用,一元一次不等式的應(yīng)用,一元二次方程的應(yīng)用.由于要求的參賽人數(shù)與條件給出的等量關(guān)系沒有直接聯(lián)系,故可大膽多設(shè)個未知數(shù)列方程或不等式,再逐步推導(dǎo)到要求的方向.17、【分析】根據(jù)旋轉(zhuǎn)性質(zhì)及直角三角形斜邊中線等于斜邊一半,求出CD=CE=5,再根據(jù)勾股定理求DE長,的值即為等腰△CDE底角的正弦值,根據(jù)等腰三角形三線合一構(gòu)建直角三角形求解.【詳解】如圖,過D點作DM⊥BC,垂足為M,過C作CN⊥DE,垂足為N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D為AB的中點,∴CD=,由旋轉(zhuǎn)可得,∠MCN=90°,MN=10,∵E為MN的中點,∴CE=,∵DM⊥BC,DC=DB,∴CM=BM=,∴EM=CE-CM=5-3=2,∵DM=,∴由勾股定理得,DE=,∵CD=CE=5,CN⊥DE,∴DN=EN=,∴由勾股定理得,CN=,∴sin∠DEC=.故答案為:.【點睛】本題考查旋轉(zhuǎn)性質(zhì),直角三角形的性質(zhì)和等腰三角形的性質(zhì),能夠用等腰三角形三線合一的性質(zhì)構(gòu)建直角三角形解決問題是解答此題的關(guān)鍵.18、1【分析】直接把點(2,5)代入反比例函數(shù)求出k的值即可.【詳解】∵點(2,5)在反比例函數(shù)的圖象上,∴5=,解得k=1.故答案為:1.【點睛】此題考查求反比例函數(shù)的解析式,利用待定系數(shù)法求函數(shù)的解析式.三、解答題(共78分)19、.【分析】利用三角函數(shù)求出,,求出AB的值,過點作于點M,可得,,利用三角函數(shù)可得:,,即可得出AC的值.【詳解】在中,,,∴,又∵在中,,∴,∴(米),過點作于點M,如圖所示,∵,,∴,,∴在中,,∴,,∵,,∴,在中,,∴米.【點睛】本題考查了仰角、俯角的問題及解直角三角形的應(yīng)用,解答本題的關(guān)鍵是結(jié)合圖形構(gòu)造直角三角形,利用三角函數(shù)解直角三角形.20、,(4,1),(1,0)【詳解】分析:利用待定系數(shù)法、描點法即可解決問題;本題解析:設(shè)二次函數(shù)的解析式y(tǒng)=ax2+bx+c.把(-1,0)(0,1),(2,9)代得到解得,∴二次數(shù)解析式y(tǒng)=-x+4x+1.當(dāng)x=4時,y=1,當(dāng)y=0時,x=-1或1.21、(1);(2).【分析】(1)從箱子中任意摸出一個球是白球的概率即是白球所占的比值;(2)此題需要兩步完成,所以采用樹狀圖法或者采用列表法都比較簡單;解題時要注意是放回實驗還是不放回實驗,此題屬于放回實驗,此題要求畫樹狀圖,要按要求解答.【詳解】解:(1)從箱子中任意摸出一個球是白球的概率是(2)記兩個白球分別為白1與白2,畫樹狀圖如圖所示:從樹狀圖可看出:事件發(fā)生的所有可能的結(jié)果總數(shù)為6,兩次摸出球的都是白球的結(jié)果總數(shù)為2,因此其概率.22、(1)詳見解析;(2)詳見解析;(3)詳見解析.【分析】(1)根據(jù)折疊和正方形的性質(zhì)結(jié)合相似三角形的判定定理即可得出答案;(2)設(shè)BE=x,利用勾股定理得出x的值,再利用相似三角形的性質(zhì)證明即可得出答案;(3)設(shè)BM=x,AM=a-x,利用勾股定理和相似三角形的性質(zhì)即可得出答案.【詳解】證明:(1)∵四邊形是正方形,∴,∴,∵為折痕,∴,∴,∴,在與中∵,,∴;(2)∵為中點,∴,設(shè),則,在中,,∴,即,∴,∴,,由(1)知,,∴,∴,,∴;(3)設(shè),則,,在中,,∴,即,解得:,由(1)知,,∴,∵,∴.【點睛】本題考查的是相似三角形的綜合,涉及的知識點有折疊的性質(zhì)、正方形的性質(zhì)、勾股定理和相似三角形,難度系數(shù)較大.23、(1)證明見解析(2)4【分析】(1)由AD為直徑,得到所對的圓周角為直角,利用等角的余角相等得到一對角相等,進而利用兩對角對應(yīng)相等的三角形相似即可得證;(2)連接OM,由BC為圓的切線,得到OM與BC垂直,利用銳角三角函數(shù)定義及勾股定理即可求出所求.【詳解】解:(1)∵AD為圓O的直徑,∴∠AMD=90°.∵∠BMC=180°,∴∠2+∠3=90°.∵∠ABM=∠MCD=90°,∴∠2+∠1=90°,∴∠1=∠3,∴△ABM∽△MCD;(2)連接OM.∵BC為圓O的切線,∴OM⊥BC.∵AB⊥BC,∴sin∠E==,即=.∵AD=8,AB=5,∴=,即OE=16,根據(jù)勾股定理得:ME===4.【點睛】本題考查了相似三角形的判定與性質(zhì),圓周角定理,銳角三角函數(shù)定義以及切線的性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.24、(1);(2)點運動到坐標(biāo)為,面積最大.【分析】(1)用待定系數(shù)法即可求拋物線解析式.

(2)設(shè)點P橫坐標(biāo)為t,過點P作PF∥y軸交AB于點F,求直線AB解析式,即能用t表示點F坐標(biāo),進而表示PF的長.把△/r/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論