廣東省茂名市十校聯(lián)考2022-2023學年數(shù)學九年級上冊期末質(zhì)量檢測模擬試題含解析_第1頁
廣東省茂名市十校聯(lián)考2022-2023學年數(shù)學九年級上冊期末質(zhì)量檢測模擬試題含解析_第2頁
廣東省茂名市十校聯(lián)考2022-2023學年數(shù)學九年級上冊期末質(zhì)量檢測模擬試題含解析_第3頁
廣東省茂名市十校聯(lián)考2022-2023學年數(shù)學九年級上冊期末質(zhì)量檢測模擬試題含解析_第4頁
廣東省茂名市十校聯(lián)考2022-2023學年數(shù)學九年級上冊期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,點A、B、C都在上,若∠AOB=72°,則∠ACB的度數(shù)為()A.18° B.30° C.36° D.72°2.在同一坐標系中,一次函數(shù)與二次函數(shù)的大致圖像可能是A. B. C. D.3.如圖,將繞著點按順時針方向旋轉(zhuǎn),點落在位置,點落在位置,若,則的度數(shù)是()A. B. C. D.4.若銳角α滿足cosα<且tanα<,則α的范圍是()A.30°<α<45° B.45°<α<60°C.60°<α<90° D.30°<α<60°5.下列事件中是必然事件是()A.明天太陽從西邊升起B(yǎng).籃球隊員在罰球線投籃一次,未投中C.實心鐵球投入水中會沉入水底D.拋出一枚硬幣,落地后正面向上6.如圖一塊直角三角形ABC,∠B=90°,AB=3,BC=4,截得兩個正方形DEFG,BHJN,設S1=DEFG的面積,S2=BHJN的面積,則S1、S2的大小關系是()A.S1>S2 B.S1<S2 C.S1=S2 D.不能確定7.已知⊙O的半徑為4cm,點P在⊙O上,則OP的長為()A.2cm B.4cm C.6cm D.8cm8.將拋物線向上平移3個單位長度,再向右平移2個單位長度,所得到的拋物線為().A.; B.;C.; D..9.如圖,若a<0,b>0,c<0,則拋物線y=ax2+bx+c的大致圖象為()A. B. C. D.10.如圖,為的直徑,弦于點,若,,則的半徑為()A.3 B.4 C.5 D.6二、填空題(每小題3分,共24分)11.已知,則=_____.12.方程的根是____.13.如圖,是⊙的直徑,是⊙上一點,的平分線交⊙于,且,則的長為_________.14.在中,若,則是_____三角形.15.如圖,已知點A的坐標為(4,0),點B的坐標為(0,3),在第一象限內(nèi)找一點P(a,b),使△PAB為等邊三角形,則2(a-b)=___________.16.某電視臺招聘一名記者,甲應聘參加了采訪寫作、計算機操作和創(chuàng)意設計的三項素質(zhì)測試得分分別為70、60、90,三項成績依次按照5:2:3計算出最后成績,那么甲的成績?yōu)開_.17.如圖,將沿方向平移得到,與重疊部分(即圖中陰影部分)的面積是面積的,若,則平移的距離是__________.,18.如圖,扇形紙扇完全打開后,外側(cè)兩竹條AB,AC夾角為120°,AB的長為20cm,扇面BD的長為15cm,則弧DE的長是_____.三、解答題(共66分)19.(10分)如圖,⊙O中,F(xiàn)G、AC是直徑,AB是弦,F(xiàn)G⊥AB,垂足為點P,過點C的直線交AB的延長線于點D,交GF的延長線于點E,已知AB=4,⊙O的半徑為.(1)分別求出線段AP、CB的長;(2)如果OE=5,求證:DE是⊙O的切線;(3)如果tan∠E=,求DE的長.20.(6分)寒冬來臨,豆絲飄香,豆絲是鄂州民間傳統(tǒng)美食;某企業(yè)接到一批豆絲生產(chǎn)任務,約定這批豆絲的出廠價為每千克4元,按要求在20天內(nèi)完成.為了按時完成任務,該企業(yè)招收了新工人,新工人李明第1天生產(chǎn)100千克豆絲,由于不斷熟練,以后每天都比前一天多生產(chǎn)20千克豆絲;設李明第x天(,且x為整數(shù))生產(chǎn)y千克豆絲,解答下列問題:(1)求y與x的關系式,并求出李明第幾天生產(chǎn)豆絲280千克?(2)設第x天生產(chǎn)的每千克豆絲的成本是p元,p與x之間滿足如圖所示的函數(shù)關系;若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價-成本)21.(6分)如圖,在矩形ABCD中,AB=6,BC=13,BE=4,點F從點B出發(fā),在折線段BA﹣AD上運動,連接EF,當EF⊥BC時停止運動,過點E作EG⊥EF,交矩形的邊于點G,連接FG.設點F運動的路程為x,△EFG的面積為S.(1)當點F與點A重合時,點G恰好到達點D,此時x=,當EF⊥BC時,x=;(2)求S關于x的函數(shù)解析式,并直接寫出自變量x的取值范圍;(3)當S=15時,求此時x的值.22.(8分)如圖,在平面直角坐標系中,雙曲線和直線y=kx+b交于A,B兩點,點A的坐標為(﹣3,2),BC⊥y軸于點C,且OC=6BC.(1)求雙曲線和直線的解析式;(2)直接寫出不等式的解集.23.(8分)已知:△ABC是等腰直角三角形,∠BAC=90°,將△ABC繞點C順時針方向旋轉(zhuǎn)得到△A′B′C,記旋轉(zhuǎn)角為α,當90°<α<180°時,作A′D⊥AC,垂足為D,A′D與B′C交于點E.(1)如圖1,當∠CA′D=15°時,作∠A′EC的平分線EF交BC于點F.①寫出旋轉(zhuǎn)角α的度數(shù);②求證:EA′+EC=EF;(2)如圖2,在(1)的條件下,設P是直線A′D上的一個動點,連接PA,PF,若AB=,求線段PA+PF的最小值.(結(jié)果保留根號)24.(8分)如圖,已知,點、坐標分別為、.(1)把繞原點順時針旋轉(zhuǎn)得,畫出旋轉(zhuǎn)后的;(2)在(1)的條件下,求點旋轉(zhuǎn)到點經(jīng)過的路徑的長.25.(10分)小琴和小江參加學校舉行的“經(jīng)典誦讀"比賽活動,誦讀材料有《論語》,《三字經(jīng)》,《弟子規(guī)》(分別用字母依次表示這三個誦讀材料),將這三個字母分別寫在張完全相同的不透明卡片的正面上,把這張卡片背面朝上洗勻后放在桌面上,比賽時小琴先從中隨機抽取一張卡片,記錄下卡精上的內(nèi)容,放回后洗勻,再由小江從中隨機抽取一張卡片,選手按各自抽取的卡片上的內(nèi)容進行誦讀比賽.小琴誦讀《論語》的概率是.請用列表法或畫樹狀圖(樹形圖)法求小琴和小江誦讀兩個不同材料的概率.26.(10分)某水果公司以2元/千克的成本購進10000千克柑橘,銷售人員在銷售過程中隨機抽取柑橘進行“柑橘損壞率”統(tǒng)計,并繪制成如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息解決下面問題:(1)柑橘損壞的概率估計值為;估計這批柑橘完好的質(zhì)量為千克.(2)若希望這批柑橘能夠獲得利潤5000元,那么在出售柑橘(只賣好果)時,每千克大約定價為多少元比較合適?(精確到0.1)

參考答案一、選擇題(每小題3分,共30分)1、C【詳解】解:∵∠AOB=72°,∴∠ACB=∠AOB=36°,故選C.2、D【分析】對于每個選項,先根據(jù)二次函數(shù)的圖象確定a和b的符號,然后根據(jù)一次函數(shù)的性質(zhì)看一次函數(shù)圖象的位置是否正確,若正確,說明它們可在同一坐標系內(nèi)存在.【詳解】A、由二次函數(shù)y=ax2+bx的圖象得a>0,b>0,則一次函數(shù)y=ax+b經(jīng)過第一、二、三象限,所以A選項錯誤;B、由二次函數(shù)y=ax2+bx的圖象得a>0,b<0,則一次函數(shù)y=ax+b經(jīng)過第一、三、四象限,所以B選項錯誤;C、由二次函數(shù)y=ax2+bx的圖象得a<0,b<0,則一次函數(shù)y=ax+b經(jīng)過第一、二、四象限,所以C選項錯誤;D、由二次函數(shù)y=ax2+bx的圖象得a<0,b>0,則一次函數(shù)y=ax+b經(jīng)過第二、三、四象限,所以D選項正確.故選:A.【點睛】本題考查了二次函數(shù)的圖象:二次函數(shù)的圖象為拋物線,可能利用列表、描點、連線畫二次函數(shù)的圖象.也考查了二次函數(shù)圖象與系數(shù)的關系.3、C【解析】由旋轉(zhuǎn)可知∠BAC=∠A’,∠A’CA=20°,據(jù)此可進行解答.【詳解】解:由旋轉(zhuǎn)可知∠BAC=∠A’,∠A’CA=20°,由AC⊥A’B’可得∠BAC=∠A’=90°-20°=70°,故選擇C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì).4、B【詳解】∵α是銳角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是銳角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故選B.【點睛】本題主要考查了余弦函數(shù)、正切函數(shù)的增減性與特殊角的余弦函數(shù)、正切函數(shù)值,熟記特殊角的三角函數(shù)值和了解銳角三角函數(shù)的增減性是解題的關鍵5、C【解析】必然事件就是一定會發(fā)生的事件,即發(fā)生的概率是1的事件,依據(jù)定義即可解決.【詳解】解:A、明天太陽從西邊升起,是不可能事件,故不符合題意;B、籃球隊員在罰球線投籃一次,未投中,是隨機事件,故不符合題意;C、實心鐵球投入水中會沉入水底,是必然事件,故符合題意;D、拋出一枚硬幣,落地后正面向上,是隨機事件,故不符合題意.故選C.6、B【分析】根據(jù)勾股定理求出AC,求出AC邊上的高BM,根據(jù)相似三角形的性質(zhì)得出方程,求出方程的解,即可求得S1,如圖2,根據(jù)相似三角形的性質(zhì)列方程求得HJ=,于是得到S2=()2>()2,即可得到結(jié)論.【詳解】解:如圖1,設正方形DEFG的邊長是x,∵△ABC是直角三角形,∠B=90°,AB=3,BC=4,∴由勾股定理得:AC=5,過B作BM⊥AC于M,交DE于N,由三角形面積公式得:BC×AB=AC×BM,∵AB=3,AC=5,BC=4,∴BM=2.4,∵四邊形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DE∥AC,∴△BDE∽△ABC,∴=,∴=,∴x=,即正方形DEFG的邊長是;∴S1=()2,如圖2,∵HJ∥BC,∴△AHJ∽△ABC,∴=,即=,∴HJ=,∴S2=()2>()2,∴S1<S2,故選:B.【點睛】本題考查了相似三角形的性質(zhì)和判定,三角形面積公式,正方形的性質(zhì)的應用,熟練掌握相似三角形的判定和性質(zhì)是解題的關鍵.7、B【分析】根據(jù)點在圓上,點到圓心的距離等于圓的半徑求解.【詳解】∵⊙O的半徑為4cm,點P在⊙O上,∴OP=4cm.故選:B.【點睛】本題考查了點與圓的位置關系:設⊙O的半徑為r,點P到圓心的距離OP=d,則有:點P在圓外?d>r;點P在圓上?d=r;點P在圓內(nèi)?d<r.8、B【分析】根據(jù)拋物線圖像的平移規(guī)律“左加右減,上加下減”即可確定平移后的拋物線解析式.【詳解】解:將拋物線向上平移3個單位長度,再向右平移2個單位長度,得到的拋物線的解析式為,故選B.【點睛】本題考查了二次函數(shù)的平移規(guī)律,熟練掌握其平移規(guī)律是解題的關鍵.9、B【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】∵a<0,∴拋物線的開口方向向下,故第三個選項錯誤;∵c<0,∴拋物線與y軸的交點為在y軸的負半軸上,故第一個選項錯誤;∵a<0、b>0,對稱軸為x=>0,∴對稱軸在y軸右側(cè),故第四個選項錯誤.故選B.10、C【分析】根據(jù)題意,連接OC,通過垂徑定理及勾股定理求半徑即可.【詳解】如下圖,連接OC,∵,,∴CE=4,∵,,∴,故選:C.【點睛】本題主要考查了圓半徑的求法,熟練掌握垂徑定理及勾股定理是解決本題的關鍵.二、填空題(每小題3分,共24分)11、【解析】根據(jù)題意,設x=5k,y=3k,代入即可求得的值.【詳解】解:由題意,設x=5k,y=3k,∴==.故答案為.【點睛】本題考查了分式的求值,解題的關鍵是根據(jù)分式的性質(zhì)對已知分式進行變形.12、,【分析】把方程變形為,把方程左邊因式分解得,則有y=0或y-5=0,然后解一元一次方程即可.【詳解】解:,∴,∴y=0或y-5=0,∴.故答案為:.【點睛】此題考查了解一元二次方程-因式分解法,其步驟為:移項,化積,轉(zhuǎn)化和求解這幾個步驟.13、【分析】連接OD,由AB是直徑,得∠ACB=90°,由角平分線的性質(zhì)和圓周角定理,得到△AOD是等腰直角三角形,根據(jù)勾股定理,即可求出AD的長度.【詳解】解:連接OD,如圖,∵是⊙的直徑,∴∠ACB=90°,AO=DO=,∵CD平分∠ACB,∴∠ACD=45°,∴∠AOD=90°,∴△AOD是等腰直角三角形,∴;故答案為:.【點睛】本題考查了圓周角定理,直徑所對的圓周角是直角,勾股定理,以及等腰直角三角形的性質(zhì),解題的關鍵是掌握圓周角定理進行解題.14、等腰【分析】根據(jù)絕對值和平方的非負性求出sinA和tanB的值,再根據(jù)銳角三角函數(shù)的特殊值求出∠A和∠B的角度,即可得出答案.【詳解】∵∴,∴∠A=30°,∠B=30°∴△ABC是等腰三角形故答案為等腰.【點睛】本題考查的是特殊三角函數(shù)值,比較簡單,需要牢記特殊三角函數(shù)值.15、【分析】根據(jù)A、B坐標求出直線AB的解析式后,求得AB中點M的坐標,連接PM,在等邊△PAB中,M為AB中點,所以PM⊥AB,,再求出直線PM的解析式,求出點P坐標;在Rt△PAM中,AP=AB=5,,即且a>0,解得a>0,即,將a代入直線PM的解析式中求出b的值,最后計算2(a-b)的值即可;【詳解】解:∵A(4,0),B(0,3),∴AB=5,設,∴,∴,∴,∵A(4,0)B(0,3),∴AB中點,連接PM,在等邊△PAB中,M為AB中點,∴PM⊥AB,,∴,∴設直線PM的解析式為,∴,∴,∴,∴,在Rt△PAM中,AP=AB=5,∴,∴,∴,∴,∵a>0,∴,∴,∴;【點睛】本題主要考查了一次函數(shù)的綜合應用,掌握一次函數(shù)是解題的關鍵.16、74【分析】利用加權平均數(shù)公式計算.【詳解】甲的成績=,故答案為:74.【點睛】此題考查加權平均數(shù),正確理解各數(shù)所占的權重是解題的關鍵.17、【分析】與相交于點,因為平移,由此求出,從而求得【詳解】解:由沿方向平移得到,【點睛】本題考查了平移的性質(zhì),以及相似三角形的性質(zhì).18、cm【分析】直接利用弧長公式計算得出答案.【詳解】弧DE的長為:.故答案是:.【點睛】考查了弧長公式計算,正確應用弧長公式是解題關鍵.三、解答題(共66分)19、(1)CB=2,AP=2;(2)證明見解析;(3)DE=.【分析】(1)根據(jù)圓周角定理由AC為直徑得∠ABC=90°,在Rt△ABC中,根據(jù)勾股定理可計算出BC=2,再根據(jù)垂徑定理由直徑FG⊥AB得到AP=BP=AB=2;(2)易得OP為△ABC的中位線,則OP=BC=1,再計算出,根據(jù)相似三角形的判定方法得到△EOC∽△AOP,根據(jù)相似的性質(zhì)得到∠OCE=∠OPA=90°,然后根據(jù)切線的判定定理得到DE是⊙O的切線;(3)根據(jù)平行線的性質(zhì)由BC∥EP得到∠DCB=∠E,則tan∠DCB=tan∠E=,在Rt△BCD中,根據(jù)正切的定義計算出BD=3,根據(jù)勾股定理計算出CD=,然后根據(jù)平行線分線段成比例定理得,再利用比例性質(zhì)可計算出DE=.【詳解】解:(1)∵AC為直徑,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直徑FG⊥AB,∴AP=BP=AB=2;(2)∵AP=BP,∴OP為△ABC的中位線,∴OP=BC=1,∴,而,∴,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切線;(3)∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴,即,∴DE=.20、(1),第10天生產(chǎn)豆絲280千克;(2)當x=13時,w有最大值,最大值為1.【分析】(1)根據(jù)題意可得關系式為:y=20x+80,把y=280代入y=20x+80,解方程即可求得;

(2)根據(jù)圖象求得成本p與x之間的關系,然后根據(jù)利潤等于訂購價減去成本價,然后整理即可得到W與x的關系式,再根據(jù)一次函數(shù)的增減性和二次函數(shù)的增減性解答;【詳解】解:(1)依題意得:令,則,解得答:第10天生產(chǎn)豆絲280千克.(2)由圖象得,當0<x<10時,p=2;當10≤x≤20時,設P=kx+b,把點(10,2),(20,3)代入得,解得∴p=0.1x+1,①1≤x≤10時,w=(4-2)×(20x+80)=40x+160,∵x是整數(shù),∴當x=10時,w最大=560(元);②10<x≤20時,w=(4-0.1x-1)×(20x+80)=-2x2+52x+240,=-2(x-13)2+1,∵a=-2<0,∴當x=-=13時,w最大=1(元)綜上,當x=13時,w有最大值,最大值為1.【點睛】本題考查的是二次函數(shù)在實際生活中的應用,主要是利用二次函數(shù)的增減性求最值問題,利用一次函數(shù)的增減性求最值,難點在于讀懂題目信息,列出相關的函數(shù)關系式.21、(1)6;10;(2)S=x2+9x+12(0<x≤6);S=x2﹣21x+102(6<x≤10);(3)﹣6+2.【分析】(1)當點F與點A重合時,x=AB=6;當EF⊥BC時,AF=BE=4,x=AB+AF=6+4=10;(2)分兩種情況:①當點F在AB上時,作GH⊥BC于H,則四邊形ABHG是矩形,證明△EFB∽△GEH,得出,求出EH=x,得出AG=BH=BE+EH=4+x,由梯形面積公式和三角形面積公式即可得出答案;②當點F在AD上時,作FM⊥BC于M,則FM=AB=6,AF=BM,同①得△EFM∽△GEC,得出,求出GC=15﹣x,得出DG=CD﹣CG=x﹣9,EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,由梯形面積公式和三角形面積公式即可得出答案;(3)當x2+9x+12=15時,當x2﹣21x+102=15時,分別解方程即可.【詳解】(1)當點F與點A重合時,x=AB=6;當EF⊥BC時,AF=BE=4,x=AB+AF=6+4=10;故答案為:6;10;(2)∵四邊形ABCD是矩形,∴∠B=∠C=∠D=90°,CD=AB=6,AD=BC=13,分兩種情況:①當點F在AB上時,如圖1所示:作GH⊥BC于H,則四邊形ABHG是矩形,∴GH=AB=6,AG=BH,∠GHE=∠B=90°,∴∠EGH+∠GEH=90°,∵EG⊥EF,∴∠FEB+∠GEH=90°,∴∠FEB=∠EGH,∴△EFB∽△GEH,∴,即,∴EH=x,∴AG=BH=BE+EH=4+x,∴△EFG的面積為S=梯形ABEG的面積﹣△EFB的面積﹣△AGF的面積=(4+4+x)×6﹣×4x﹣(6﹣x)(4+x)=x2+9x+12,即S=x2+9x+12(0<x≤6);②當點F在AD上時,如圖2所示:作FM⊥BC于M,則FM=AB=6,AF=BM,同①得:△EFM∽△GEC,∴,即,解得:GC=15﹣x,∴DG=CD﹣CG=x﹣9,∵EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,∴△EFG的面積為S=梯形CDFE的面積﹣△CEG的面積﹣△DFG的面積=(9+19﹣x)×6﹣×9×(15﹣x)﹣(19﹣x)(x﹣9)=x2﹣21x+102即S=x2﹣21x+102(6<x≤10);(3)當x2+9x+12=15時,解得:x=﹣6±(負值舍去),∴x=﹣6+;當x2﹣21x+102=15時,解得:x=14±(不合題意舍去);∴當S=15時,此時x的值為﹣6+.【點睛】本題考查二次函數(shù)的動點問題,題目較難,解題時需注意分類討論,避免漏解.22、(1)雙曲線的解析式為,直線的解析式為y=﹣2x﹣4;(2)﹣3<x<0或x>1.【分析】(1)將A坐標代入反比例解析式中求出m的值,確定出反比例解析式,根據(jù)OC=6BC,且B在反比例圖象上,設B坐標為(a,﹣6a),代入反比例解析式中求出a的值,確定出B坐標,將A與B坐標代入一次函數(shù)解析式中求出k與b的值,即可確定出一次函數(shù)解析式;(2)根據(jù)一次函數(shù)與反比例函數(shù)的兩交點A與B的橫坐標,以及0,將x軸分為四個范圍,找出反比例圖象在一次函數(shù)圖象上方時x的范圍即可.【詳解】(1)∵點A(﹣3,2)在雙曲線上,∴,解得m=﹣6,∴雙曲線的解析式為,∵點B在雙曲線上,且OC=6BC,設點B的坐標為(a,﹣6a),∴,解得:a=±1(負值舍去),∴點B的坐標為(1,﹣6),∵直線y=kx+b過點A,B,∴,解得:,∴直線的解析式為y=﹣2x﹣4;(2)根據(jù)圖象得:不等式的解集為﹣3<x<0或x>1.23、(1)①105°,②見解析;(2)【分析】(1)①解直角三角形求出∠A′CD即可解決問題,②連接A′F,設EF交CA′于點O,在EF時截取EM=EC,連接CM.首先證明△CFA′是等邊三角形,再證明△FCM≌△A′CE(SAS),即可解決問題.(2)如圖2中,連接A′F,PB′,AB′,作B′M⊥AC交AC的延長線于M.證明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F(xiàn)關于A′E對稱,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解決問題.【詳解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋轉(zhuǎn)角α為105°.②證明:連接A′F,設EF交CA′于點O.在EF時截取EM=EC,連接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′CF是等邊三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等邊三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如圖2中,連接A′F,PB′,AB′,作B′M⊥AC交AC的延長線于M.由②可知,∠EA′F=′

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論