2023屆福建省南那時華僑中學(xué)高考數(shù)學(xué)一模試卷(含答案解析)_第1頁
2023屆福建省南那時華僑中學(xué)高考數(shù)學(xué)一模試卷(含答案解析)_第2頁
2023屆福建省南那時華僑中學(xué)高考數(shù)學(xué)一模試卷(含答案解析)_第3頁
2023屆福建省南那時華僑中學(xué)高考數(shù)學(xué)一模試卷(含答案解析)_第4頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在中,,是上的一點,若,則實數(shù)的值為()A. B. C. D.2.已知整數(shù)滿足,記點的坐標為,則點滿足的概率為()A. B. C. D.3.記為等差數(shù)列的前項和.若,,則()A.5 B.3 C.-12 D.-134.已知向量,,則向量與的夾角為()A. B. C. D.5.馬林●梅森是17世紀法國著名的數(shù)學(xué)家和修道士,也是當(dāng)時歐洲科學(xué)界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎(chǔ)上對2p﹣1作了大量的計算、驗證工作,人們?yōu)榱思o念梅森在數(shù)論方面的這一貢獻,將形如2P﹣1(其中p是素數(shù))的素數(shù),稱為梅森素數(shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是()A.3 B.4 C.5 D.66.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.7.下圖為一個正四面體的側(cè)面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.8.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數(shù),則()A., B.,C., D.,9.集合,則()A. B. C. D.10.當(dāng)時,函數(shù)的圖象大致是()A. B.C. D.11.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.212.在中,,,,若,則實數(shù)()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為且滿足,則數(shù)列的通項_______.14.在編號為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機抽取其中的三張,則抽取的三張卡片編號之和是偶數(shù)的概率為________.15.如圖,在三棱錐A﹣BCD中,點E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值時,三棱錐A﹣BCD的外接球的表面積為_____.16.已知雙曲線的漸近線與準線的一個交點坐標為,則雙曲線的焦距為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)對于非負整數(shù)集合(非空),若對任意,或者,或者,則稱為一個好集合.以下記為的元素個數(shù).(1)給出所有的元素均小于的好集合.(給出結(jié)論即可)(2)求出所有滿足的好集合.(同時說明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.18.(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.19.(12分)已知數(shù)列中,,前項和為,若對任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請說明理由.20.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求和的直角坐標方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.21.(12分)設(shè)實數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.22.(10分)已知函數(shù)的導(dǎo)函數(shù)的兩個零點為和.(1)求的單調(diào)區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.

2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】

變形為,由得,轉(zhuǎn)化在中,利用三點共線可得.【題目詳解】解:依題:,又三點共線,,解得.故選:.【答案點睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點共線?(為平面內(nèi)任一點,)2.D【答案解析】

列出所有圓內(nèi)的整數(shù)點共有37個,滿足條件的有7個,相除得到概率.【題目詳解】因為是整數(shù),所以所有滿足條件的點是位于圓(含邊界)內(nèi)的整數(shù)點,滿足條件的整數(shù)點有共37個,滿足的整數(shù)點有7個,則所求概率為.故選:.【答案點睛】本題考查了古典概率的計算,意在考查學(xué)生的應(yīng)用能力.3.B【答案解析】

由題得,,解得,,計算可得.【題目詳解】,,,,解得,,.故選:B【答案點睛】本題主要考查了等差數(shù)列的通項公式,前項和公式,考查了學(xué)生運算求解能力.4.C【答案解析】

求出,進而可求,即能求出向量夾角.【題目詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【答案點睛】本題考查了向量的坐標運算,考查了數(shù)量積的坐標表示.求向量夾角時,通常代入公式進行計算.5.C【答案解析】

模擬程序的運行即可求出答案.【題目詳解】解:模擬程序的運行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時,不滿足條件p≤7,退出循環(huán),結(jié)束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是5,故選:C.【答案點睛】本題主要考查程序框圖,屬于基礎(chǔ)題.6.B【答案解析】

由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計算可得.【題目詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.【答案點睛】本題考查等差數(shù)列的下標和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.7.C【答案解析】

將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【題目詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設(shè)正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【答案點睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應(yīng)用,屬于中檔題.8.C【答案解析】

根據(jù)古典概型概率計算公式,計算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項.【題目詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【答案點睛】本小題主要考查離散型隨機變量分布列和數(shù)學(xué)期望的計算,屬于中檔題.9.D【答案解析】

利用交集的定義直接計算即可.【題目詳解】,故,故選:D.【答案點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎(chǔ)題.10.B【答案解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導(dǎo)數(shù)的應(yīng)用以及數(shù)學(xué)化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.11.B【答案解析】

求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【題目詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【答案點睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計算能力.12.D【答案解析】

將、用、表示,再代入中計算即可.【題目詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【答案點睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運算,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

先求得時;再由可得時,兩式作差可得,進而求解.【題目詳解】當(dāng)時,,解得;由,可知當(dāng)時,,兩式相減,得,即,所以數(shù)列是首項為,公比為的等比數(shù)列,所以,故答案為:【答案點睛】本題考查由與的關(guān)系求通項公式,考查等比數(shù)列的通項公式的應(yīng)用.14.【答案解析】

先求出所有的基本事件個數(shù),再求出“抽取的三張卡片編號之和是偶數(shù)”這一事件包含的基本事件個數(shù),利用古典概型的概率計算公式即可算出結(jié)果.【題目詳解】一次隨機抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個,其中“抽取的三張卡片編號之和是偶數(shù)”包含6個基本事件,因此“抽取的三張卡片編號之和是偶數(shù)”的概率為:.故答案為:.【答案點睛】本題考查了古典概型及其概率計算公式,屬于基礎(chǔ)題.15.32π【答案解析】

設(shè)ED=a,根據(jù)勾股定理的逆定理可以通過計算可以證明出CE⊥ED.AM=x,根據(jù)三棱錐的體積公式,運用基本不等式,可以求出AM的長度,最后根據(jù)球的表面積公式進行求解即可.【題目詳解】設(shè)ED=a,則CDa.可得CE2+DE2=CD2,∴CE⊥ED.當(dāng)平面ABD⊥平面BCD時,當(dāng)四面體C﹣EMN的體積才有可能取得最大值,設(shè)AM=x.則四面體C﹣EMN的體積(a﹣x)a×xax(a﹣x),當(dāng)且僅當(dāng)x時取等號.解得a=2.此時三棱錐A﹣BCD的外接球的表面積=4πa2=32π.故答案為:32π【答案點睛】本題考查了基本不等式的應(yīng)用,考查了球的表面積公式,考查了數(shù)學(xué)運算能力和空間想象能力.16.1【答案解析】

由雙曲線的漸近線,以及求得的值即可得答案.【題目詳解】由于雙曲線的漸近線與準線的一個交點坐標為,所以,即①,把代入,得,即②又③聯(lián)立①②③,得.所以.故答案是:1.【答案點睛】本題考查雙曲線的性質(zhì),注意題目“雙曲線的漸近線與準線的一個交點坐標為”這一條件的運用,另外注意題目中要求的焦距即,容易只計算到,就得到結(jié)論.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),,,.(2);證明見解析.(3)證明見解析.【答案解析】

(1)根據(jù)好集合的定義列舉即可得到結(jié)果;(2)設(shè),其中,由知;由可知或,分別討論兩種情況可的結(jié)果;(3)記,則,設(shè),由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【題目詳解】(1),,,.(2)設(shè),其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時,,不滿足題意;若,此時,滿足題意,,其中為相異正整數(shù).(3)記,則,首先,,設(shè),其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對于,考慮,,其和大于,故其差,特別的,,,由,且,,以此類推:,,此時,故中存在元素,使得中所有元素均為的整數(shù)倍.【答案點睛】本題考查集合中的新定義問題的求解,關(guān)鍵是明確已知中所給的新定義的具體要求,根據(jù)集合元素的要求進行推理說明,對于學(xué)生分析和解決問題能力、邏輯推理能力有較高的要求,屬于較難題.18.(1)見解析(2)【答案解析】

(1)利用面面垂直的性質(zhì)定理證得平面,由此證得,根據(jù)圓的幾何性質(zhì)證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標系,通過平面和平面的法向量,計算出二面角的余弦值.【題目詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當(dāng)點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設(shè),記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,設(shè)平面的法向量為,則令,得.設(shè)平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【答案點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19.(1)(2)存在,【答案解析】

由數(shù)列為“數(shù)列”可得,,,兩式相減得,又,利用等比數(shù)列通項公式即可求出,進而求出;由題意得,,,兩式相減得,,據(jù)此可得,當(dāng)時,,進而可得,即數(shù)列為常數(shù)列,進而可得,結(jié)合,得到關(guān)于的不等式,再由時,且為整數(shù)即可求出符合題意的的所有值.【題目詳解】因為數(shù)列為“數(shù)列”,所以,故,兩式相減得,在中令,則可得,故所以,所以數(shù)列是以為首項,以為公比的等比數(shù)列,所以,因為,所以.(2)由題意得,故,兩式相減得所以,當(dāng)時,又因為所以當(dāng)時,所以成立,所以當(dāng)時,數(shù)列是常數(shù)列,所以因為當(dāng)時,成立,所以,所以在中令,因為,所以可得,所以,由時,且為整數(shù),可得,把分別代入不等式可得,,所以存在數(shù)列符合題意,的所有值為.【答案點睛】本題考查數(shù)列的新定義、等比數(shù)列的通項公式和數(shù)列遞推公式的運用;考查運算求解能力、邏輯推理能力和對新定義的理解能力;通過反復(fù)利用遞推公式,得到數(shù)列為常數(shù)列是求解本題的關(guān)鍵;屬于綜合型強、難度大型試題.20.(1)..(2)最大距離為.【答案解析】

(1)直接利用極坐標方程和參數(shù)方程的公式計算得到答案.(2)曲線的參數(shù)方程為,設(shè),計算點到直線的距離公式得到答案.【題目詳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論