


版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021年湖北省荊門市普通高校對口單招高等數(shù)學(xué)二第一輪測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(30題)1.A.A.0B.2C.3D.5
2.A.-2B.-1C.0D.2
3.
4.
5.設(shè)f(x)的一個原函數(shù)為xsinx,則f(x)的導(dǎo)函數(shù)是()。A.2sinxxcosxB.2cosxxsinxC.-2sinx+xcosxD.-2cosx+xsinx
6.下列廣義積分收斂的是A.A.
B.
C.
D.
7.
8.()。A.3eB.e/3C.-e/3D.-3e
9.
10.
11.5人排成一列,甲、乙必須排在首尾的概率P=()。A.2/5B.3/5C.1/10D.3/10
12.若隨機(jī)事件A與B互不相容,且P(A)=0.4,P(B)=0.3,則P(A+B)=()。A.0.82B.0.7C.0.58D.0.52
13.設(shè)函數(shù)f(x)在x=1處可導(dǎo),且f(1)=0,若f"(1)>0,則f(1)是()。A.極大值B.極小值C.不是極值D.是拐點(diǎn)
14.當(dāng)x→0時(shí),ln(1+αx)是2x的等價(jià)無窮小量,則α=A.A.-1B.0C.1D.2
15.
16.設(shè)函數(shù)f(x)=xlnx,則∫f'(x)dx=__________。A.A.xlnx+CB.xlnxC.1+lnx+CD.(1/2)ln2x+C
17.以下結(jié)論正確的是().A.函數(shù)f(x)的導(dǎo)數(shù)不存在的點(diǎn),一定不是f(x)的極值點(diǎn)
B.若x0為函數(shù)f(x)的駐點(diǎn),則x0必為?(x)的極值點(diǎn)
C.若函數(shù)f(x)在點(diǎn)x0處有極值,且fˊ(x0)存在,則必有fˊ(x0)=0
D.若函數(shù)f(x)在點(diǎn)x0處連續(xù),則fˊ(x0)一定存在
18.當(dāng)x→0時(shí),x2是x-1n(1+x)的().
A.較高階的無窮小量B.等價(jià)無窮小量C.同階但不等價(jià)的無窮小量D.較低階的無窮小量
19.已知f'(x+1)=xex+1,則f'(x)=A.A.xex
B.(x-1)ex
C.(x+1)ex
D.(x+1)ex+41
20.
21.
22.
23.
24.
25.
26.()。A.
B.
C.
D.
27.
28.
29.
30.
二、填空題(10題)31.
32.
33.
34.函數(shù)y=ex2的極值點(diǎn)為x=______.35.36.37.
38.
39.
40.
三、計(jì)算題(10題)41.
42.求函數(shù)f(x)=x3-3x-2的單調(diào)區(qū)間和極值.
43.
44.
45.
46.
47.
48.
49.
50.
四、解答題(5題)51.
52.
53.
54.
55.
五、綜合題(2題)56.
57.
六、單選題(1題)58.
參考答案
1.D
2.D根據(jù)函數(shù)在一點(diǎn)導(dǎo)數(shù)定義的結(jié)構(gòu)式可知
3.
4.D
5.B本題主要考查原函數(shù)的概念。因?yàn)閒(x)=(xsinx)ˊ=sinx+xcosx,則fˊ(x)=cosx+cosx-xsinx=2cosx-xsinx,選B。
6.D
7.D
8.B
9.C
10.A
11.C
12.B
13.B
14.D
15.C解析:
16.A
17.C本題考查的主要知識點(diǎn)是函數(shù)在一點(diǎn)處連續(xù)、可導(dǎo)的概念,駐點(diǎn)與極值點(diǎn)等概念的相互關(guān)系,熟練地掌握這些概念是非常重要的.要否定一個命題的最佳方法是舉一個反例,
例如:
y=|x|在x=0處有極小值且連續(xù),但在x=0處不可導(dǎo),排除A和D.
y=x3,x=0是它的駐點(diǎn),但x=0不是它的極值點(diǎn),排除B,所以命題C是正確的.
18.C本題考查兩個無窮小量階的比較.
比較兩個無窮小量階的方法就是求其比的極限,從而確定正確的選項(xiàng).本題即為計(jì)算:
由于其比的極限為常數(shù)2,所以選項(xiàng)C正確.
請考生注意:由于分母為x-ln(1+x),所以本題不能用等價(jià)無窮小量代換ln(1+x)-x,否則將導(dǎo)致錯誤的結(jié)論.
與本題類似的另一類考題(可以為選擇題也可為填空題)為:確定一個無窮小量的“階”.例如:當(dāng)x→0時(shí),x-In(1+x)是x的
A.1/2階的無窮小量
B.等價(jià)無窮小量
C.2階的無窮小量
D.3階的無窮小量
要使上式的極限存在,則必須有k-2=0,即k=2.
所以,當(dāng)x→0時(shí),x-in(1壩)為x的2階無窮小量,選C.
19.A用換元法求出f(x)后再求導(dǎo)。
用x-1換式中的x得f(x)=(x-1)ex,
所以f'(x)=ex(x-1)ex=xex。
20.B
21.C
22.
23.B
24.D
25.C
26.B
27.B
28.C
29.B
30.-2/3
31.
解析:32.1/8
33.
34.35.
36.x/16
37.
38.2
39.
40.2xln2-sinx
41.
42.函數(shù)的定義域?yàn)?-∞,+∞).
列表如下:
函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 承包荒山種樹合同范本
- 防火除草勞務(wù)合同范本
- 售樓廣告合同范本簡單
- 土建工地施工安全
- 神經(jīng)源大腸護(hù)理
- 種子銷售批發(fā)合同范本
- 房屋經(jīng)濟(jì)合同范本
- 2025至2030年中國無牙螺絲數(shù)據(jù)監(jiān)測研究報(bào)告
- 面部氣血護(hù)理方法
- 幼兒歌曲伴奏MUSIC91課件
- 2025年初中主題班會課件:好習(xí)慣成就好人生
- 學(xué)校教職工代表大會全套會議會務(wù)資料匯編
- 中華人民共和國監(jiān)察法宣貫培訓(xùn)
- 2025年山東傳媒職業(yè)學(xué)院高職單招高職單招英語2016-2024歷年頻考點(diǎn)試題含答案解析
- 2025年春新教科版物理八年級下冊課件 第10章 流體的力現(xiàn)象 1 在流體中運(yùn)動
- 《中醫(yī)基礎(chǔ)理論》課件-中醫(yī)學(xué)理論體系的基本特點(diǎn)-整體觀念
- 全國職業(yè)院校技能大賽高職組(商務(wù)數(shù)據(jù)分析賽項(xiàng))備賽試題及答案
- 課題申報(bào)書:“四新”視域下地方高校學(xué)科建設(shè)與人才培養(yǎng)研究
- 施工爆破作業(yè)審批制度范文(2篇)
- 中國干眼臨床診療專家共識(2024年)解讀
- 建筑行業(yè)材料供應(yīng)應(yīng)急預(yù)案
評論
0/150
提交評論