版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
(圓滿版)多元函數(shù)微分法及其應(yīng)用期末復(fù)習(xí)題高等數(shù)學(xué)下冊(上海電機學(xué)院)(圓滿版)多元函數(shù)微分法及其應(yīng)用期末復(fù)習(xí)題高等數(shù)學(xué)下冊(上海電機學(xué)院)(圓滿版)多元函數(shù)微分法及其應(yīng)用期末復(fù)習(xí)題高等數(shù)學(xué)下冊(上海電機學(xué)院)第八章偏導(dǎo)數(shù)與全微分參照答案第八章偏導(dǎo)數(shù)與全微分一、選擇題1.假定u=u(x,y)是可微函數(shù),且u(x,y)yx21,uyx2x,那么uyx2[A]xyA.11C.-1D.12B.22.函數(shù)zx2y26x2y6[D]A.在點(-1,3)處取極大值B.在點(-1,3)處取極小值C.在點(3,-1)處取極大值D.在點(3,-1)處取極小值3.二元函數(shù)fx,y在點x0,y0處的兩個偏導(dǎo)數(shù)fxx0,y0,fyx0,y0存在是函數(shù)f在該點可微的[B]A.充分而非必需條件B.必需而非充分條件C.充分必需條件D.既非充分也非必需條件4.設(shè)u=x2+2y2+3z2+xy+3x-2y-6z在點O(0,0,0)指向點A(1,1,1)方向的導(dǎo)數(shù)u[D]lA.535353536B.C.3D.365.函數(shù)zx3y33xy[B]A.在點(0,0)處取極大值B.在點(1,1)處取極小值C.在點(0,0),(1,1)處都取極大值D.在點(0,0),(1,1)處都取極小值6.二元函數(shù)fx,y在點x0,y0處可微是fx,y在該點連續(xù)的[A]A.充分而非必需條件B.必需而非充分條件C.充分必需條件D.既非充分也非必需條件7.ysinyx0(01),那么dy=[B]dxA.1cosyB.1C.1cosyD.1cosy1cosy18.函數(shù)zxy5020xy〔x>0,y>0〕[D]A.在點(2,5)處取極大值B.在點(2,5)處取極小值C.在點(5,2)處取極大值D.在點(5,2)處取極小值9.二元函數(shù)fx,y在點x0,y0處連續(xù)的是fx,y在點x0,y0處可微的[A]A.必需而非充分條件B.充分而非必需條件-1-第八章偏導(dǎo)數(shù)與全微分參照答案C.充分必需條件D.既非充分也非必需條件10.曲線x=t,y=t2,z=t3全部切線中與平面x+2y+z=4平行的切線有[B]A.1條條條D.不存在11.設(shè)f(x,y)xy,那么f(x,y)By2x2yxA.xyB.x2y2x2y2y2x2y4x2y4x4C.x4D.x4y4y412.為使二元函數(shù)f(x,y)xy沿某一特別路徑趨勢(0,0)的極限為2,這條路線應(yīng)選擇xy為BA.xyB.xyC.xD.2xy43y3213.設(shè)函數(shù)zf(x,y)知足2z2,且f(x,1)x2,fy(x,1)x1,那么f(x,y)By2A.y2(x1)y2B.y2(x1)y2C.y2(x1)y2D.y2(x1)y214.設(shè)f(x,y)3x2y,那么f(xy,f(x,y))CA.3xy4x4yB.xyx2yC.3xy6x4yD.3xy4x6y.為使二元函數(shù)f(x,y)xy2在全平面內(nèi)連續(xù),那么它在(0,0)處應(yīng)被增補定義為B15x2y2D.16.函數(shù)f(xy,xy)x2y2,那么f(x,y)f(x,y)CxyA.2x2yB.2x2yC.xyD.xy17.假定f(y)x2y2(x0),那么f(x)BxxA.x21B.x21C.x21D.xxx2118.假定zyx,那么在點D處有zzyxA.(0,1)B.(e,1)C.(1,e)D.(e,e)-2-第八章偏導(dǎo)數(shù)與全微分參照答案19.設(shè)zxy2,那么以下結(jié)論正確的選項是A2z2z2z2zA.0B.0xyyxxyyx2z2zD.二者大小沒法確立C.y0xyx0,xy020.函數(shù)f(x,y)xsin1ysin1,xy0,那么極限limf(x,y)〔C〕.x0yxy0(A)等于1(B)等于2(C)等于0(D)不存在21.函數(shù)zxy在點(0,0)(D).(A)有極大值(B)有極小值(C)不是駐點(D)無極值22.二元函數(shù)zx2y2在原點(0,0)處〔A〕.(A)連續(xù),但偏導(dǎo)不存在(B)可微(C)偏導(dǎo)存在,但不連續(xù)(D)偏導(dǎo)存在,但不能夠微23.設(shè)uf(r),而rx2y2z2,f(r)擁有二階連續(xù)導(dǎo)數(shù),那么2u2u2ux2y2z2B〕.(A)f''(r)1f'(r)(B)f''(r)2f'(r)rr(C)1f''(r)1f'(r)(D)1f''(r)2f'(r)r2rr2r24.函數(shù)zf(x,y)在點(x0,y0)處連續(xù)是它在該點偏導(dǎo)存在的〔D〕.(A)必需而非充分條件(B)充分而非必需條件(C)充分必需條件(D)既非充分又非必需條件25.函數(shù)z1x2y2的極大值點是〔D〕.(A)(1,1)(B)(1,0)(C)(0,1)(D)(0,0)26.設(shè)f(x,y)y,那么fx(2,1)〔B〕.arcsinx1(B)11(D)1(A)44(C)2227.極限limx2y2〔B〕.x4yx0y0-3-第八章偏導(dǎo)數(shù)與全微分參照答案(A)等于0(B)不存在(C)等于21(D)存在且不等于0及1228.zf(x,y)假定在點P0(x0,y0)處的兩個一階偏導(dǎo)數(shù)存在,那么〔B〕.(A)f(x,y)在點P0連續(xù)(B)zf(x,y0)在點x0連續(xù)(C)dzz|Pdxz|Pdy(D)A,B,C都不對x0y029.設(shè)函數(shù)zxy,那么dz=〔A〕.(A).yxy1dxxylnxdy(B).yxy1dxxydy(C).xydxxylnxdy(D).yxy1dxxylnydyzu2lnv,ux,vxy,那么z30.yy〔C〕2x2lnxyx22x2x2333lnxy3〔A〕yy〔B〕yy2x2lnxyx22xlnxyxy3y322〔C〕〔D〕yy31.函數(shù)z=1x2y2的定義域是〔D〕〔A.〕D={(x,y)|x2+y2=1}〔B.〕D={(x,y)|x2+y21}〔C.〕D={(x,y)|x2+y2<1}〔D.〕D={(x,y)|x2+y21}32.設(shè)f(x,y)xy,那么以下式中正確的選項是〔C〕;x2y2(A)fx,yf(x,y);(B)f(xy,xy)f(x,y);x(C)f(y,x)f(x,y);(D)f(x,y)f(x,y)33.設(shè)zexcosy,那么2z〔D〕;xy(A)exsiny;(B)exexsiny;(C)excosy;(D)exsiny34.f(xy,xy)x2y2,那么ff〔C〕;xy-4-第八章偏導(dǎo)數(shù)與全微分參照答案(A)2x2y;(B)xy;(C)2x2y(D)xy.z35.設(shè)z2x23xyy2,那么xy〔B〕〔A〕6〔B〕3〔C〕-2〔D〕2.zfx,y,那么z36.設(shè)xx0,y0〔B〕limfx0x,y0yfx0,y0limfx0x,yfx0,y0xx〔A〕x0〔B〕x0limfx0x,y0fx0,y0fx0x,y0xlimx〔C〕x0〔D〕x0設(shè)由方程ezxyz0確立的隱函數(shù)zfx,y,那么z37.x〔B〕zzyy〔A〕1z〔B〕xz1〔C〕x1z〔D〕x1z38.二次函數(shù)zln(4x2y2)x21的定義域是〔D〕y21A.1<x2y2≤4;B.–1≤x2y2<4;C.–1≤x2y2≤4;D.1<x2y2<4。39.f(x,y)在點(x,y)處的偏導(dǎo)數(shù)fx(x,y)和fy(x,y)連續(xù)是f(x,y)可微分的〔B〕充分必需條件;B.充分非必需條件;C.必需非充分條件;D.非充分又非必需條件。40.拋物面zx2y2上點P處的切平面平行于平面2xyz30,那么點P的坐標(biāo)是〔C〕A.(1,1,0);B.(1,1,0);C.(1,1,5);D.(1,1,5)22242441.設(shè)zexyyx2,那么z︱(1,2)〔B〕yA.e1;B.e21;C.2e1;D.2e1。42.設(shè)二元函數(shù)zx3y33x23y29x的極小值點是〔A〕A.〔1,0〕;B.〔1,2〕;C.〔-3,0〕;D.〔-3,2〕-5-第八章偏導(dǎo)數(shù)與全微分參照答案uxy,那么u43.設(shè)x1,1〔B〕1〔A〕0〔B〕2〔C〕-1〔D〕144.設(shè)zfx,y是由方程xyzsin(xyz)決定的隱函數(shù),那么
zx〔D〕xsinyzcosyzz〔A〕z〔B〕yz〔C〕yz〔D〕xzexyyx2,那么z45.設(shè)y1,2(B)〔A〕e1〔B〕e21〔C〕2e1〔D〕2e1二、填空題1.xlim(1x)ye22yy2.函數(shù)u=ln(x2y2z2)在點M(1,2,-2)2的梯度gradu={1,2,-2}93.limsin(xy)2x2yy04.zf(xy)是可微函數(shù),那么dzyf'(xy)dxxf'(xy)dy5.limxy=4(x,y)(0,0)xy42.設(shè)rx2y2z2,那么2rrrgradr=2xi2yj2zk67.曲線z1x2y2在點(1,1,3)處的切線與Y軸的正向夾角是3x18.設(shè)rln(x2y222xr2yr2zrz),那么gradrx2y2z2i2y2z2jx2y2z2kx9.函數(shù)zxy的中斷點是xy0x3y310.函數(shù)uxyz在點(1,1,1)沿方向(2,1,3)的方導(dǎo)游數(shù)是0-6-第八章偏導(dǎo)數(shù)與全微分參照答案函數(shù)ulnxyz的定義域是(x,y,z)x0,y0,z0或x0,y0,z0或x0,y0,z0或x0,y0,z012.二元函數(shù)zln4arcsin1的定義域是1x2y24x2y2x2y213.函數(shù)u3x2y22y4x6z在原點沿方向l{2,3,1}的方導(dǎo)游數(shù)為
81414.函數(shù)zln(xlny)的定義域是{(x,y)|x0,y1或x0,0y1}15.曲面exxyz3在點(0,1,2)處的法線方程為xy1z220116.極限lim2xy41xy4x0y017.假定f(x,y)3x2y,那么f[xy,f(x,y)]6x4y3xy18.設(shè)有函數(shù)u(x,y,z)xyz,那么du|(1,2,2)4dxdz19.函數(shù)z1x2y2的極大值點是(0,0)xy2r2,0,2},那么方導(dǎo)游數(shù)u20.設(shè)函數(shù)uz3,l{222l1,1,121.設(shè)函數(shù)zfxy,x2y2可微,那么zxf12yf2y22.曲面z2x2y2上一點〔1,-1,3〕處的切平面方程為4x2yz3023.4zx2y2在點P〔0,1,3〕處的切平面方程2y+z=5,法線方程xy1z302124、設(shè)zex22xy,那么全微分dz=2ex22xyxydxxdy25、設(shè)z=11n(x2y2),那么2z=2xy2xy(x2y2)226、f(xy,xy)x2y2,f(x,y)f(x,y)2x2yxy-7-第八章偏導(dǎo)數(shù)與全微分參照答案27.2xy4=1limxy4x0y0lnzxzzzyz,那么xxzx28.29.zsinxy,那么dzdzycosxydxxcosxydy三、計算與證明1.設(shè)z=f(x+y,xy)的二階偏導(dǎo)數(shù)連續(xù),求2zxy解:z=f1'f2'yx2zf12''(xy)xyf22f2=f11'''''xy2.求平面xyz1和柱面x2y21的交線上與xoy平面距離最短的點3410解:設(shè)(x,y,z)是交線上任一點,由,距離函數(shù)f(x,y,z)=z又設(shè)L(x,y,z,,)z(xyz1)(x2y21)3410Lx32x0(1)Ly42y0(2)令:Lz2z100(3)Lxyz10(4)3410Lx2y210(5)(1)與(2)比較,得:y3x,443代入(5),得:x;相應(yīng)的有:y55進而得交線上的兩點:(4,3,35),(4,3,85)556556此中:點(4,3,35)到xoy平面的距離是355566點(4,3,85)到xoy平面的距離是855566比較得:所求點是(4,3,35)556-8-第八章偏導(dǎo)數(shù)與全微分參照答案3.證明極限limxy2不存在x2y4x0y0證明:當(dāng)(x,y)沿著曲線y2=x趨于(0,0)時,limxy2=limy4124y4y42y0x0當(dāng)(x,y)沿著曲線2y2=x趨于(0,0)時,limxy2=lim2y422444x0xyy04yy5y0所以,極限limxy2不存在2y4x0y0x4.設(shè)z=xf(xy,ey),求2zxy解:z=ff1'xyx2zeyf2x2yf11''xyeyf12=2xf1''''xy5.求曲線x=t-sint,y=1-cost,z=4sint,在點M(21,1,22)處的切線及法平面方程2解:因為x'=1-cost,yt'=sint,z'=2costtt2而點M(21,1,22)所對應(yīng)的參數(shù)為t=2點M的切向量T={1,1,2}x1y1z22故點M處的切線方程為2112點M處法平面方程為:x+y+2z=426.求曲面ezzxy3在點(2,1,0)處的切平面方程及法線方程解:令F(x,y,z)=ezzxy3那么Fx'y,Fy'x,Fz'ex1-9-第八章偏導(dǎo)數(shù)與全微分參照答案故Fx'(2,1,0)1,F'(2,1,0)2,F'(2,1,0)0yz所以:點(2,1,0)處的切平面方程為x-2+2(y-1)=0,即:x+2y-4=0點(2,1,0)x2y1處的法線方程為120z=ysin(x+y),求全微分dz及梯度gradz解:zycos(xy),zsin(xy)ycos(xy)xy故:dz=[ycos(x+y)]dx+[sin(x+y)+ycos(x+y)]dygradz=(ycos(x+y),sin(x+y)+ycos(x+y))xyb0與曲面zx2y28.設(shè)直線l:z3在平面上,而平面相切于點xay0M(1,-2,5),求a,b之值解:點M處曲面的法向量n={2x,2y,-1}M={2,-4,-1}點M處切平面方程為2(x-1)-4(y+2)-(z-5)=0即:2x-4y-z-5=0,此即平面之方程由直線l可得y=-x-b,z=x-a(x+b)-3代入得:(5+a)x+4b+ab-2=0解得:a=-5,b=-29.設(shè)函數(shù)z=f(u,v),那么u,v擁有二階連續(xù)偏導(dǎo)數(shù),此中x2zu=3x+2y,v=,求yxy解:z=3f1'1f2'xy2z=6f11''xf22''23x)f12''1f2'xyy3(y2y2y10.limx6y6能否存在?假如存在,等于多少?假如不存在,說明原因。(x2y4)5(x,y)(0,0)解:不存在。limx6y60。limx6y6limx9。24524525x02x0y)x0,yx(xy)(2x)y0(x11.求u對于x,y,z的一階偏導(dǎo)數(shù):uxyz解:uyzxyz1。uzyz1xyzlnxuxyzyzlnxlnyxyz-10-第八章偏導(dǎo)數(shù)與全微分參照答案12、說明函數(shù)在何時獲得極值,并求出該極值:z(xy1)2解:函數(shù)定義域R2。因為z0,故xy10時極?。粺o極大。z2(xy1)0x解方程組,可知函數(shù)駐點散布在直線xy10上。z2(xy1)0y對于此直線上的點都有z0??墒莦0恒建立。所以函數(shù)在直線xy10上的各點獲得極小值z0。13.lim(x2y2)x2y2(x,y)(0,0)解:lim(x2y2)x2y2=limex2y2ln(x2y2)(x,y)(0,0)(x,y)(0,0)而x2y2ln(x2y2)1x2y22ln(x2y2)4lim1(x2y2)2ln(x2y2)0,。故原式=e01x,y(0,0)414.求u的一階全微分:uzx2y2解:du2z2(xdxydy)dz(x22)x2y2yxxt15、求函數(shù)u在點M〔1,2,-2〕沿曲線y2t2在此點的切線方向上的x2y2z2z2t4方導(dǎo)游數(shù)。解:uy2z2,uxy3,x3y(x2y2z2)2(x2y2z2)2uxz。z3(x2y2z2)2在點〔1,2,-2〕它們的值分別是8,2,2272727曲線在該點切線方向余弦為1,4,8。999方導(dǎo)游數(shù)為u81242816g()gg)l2799243M27279-11-第八章偏導(dǎo)數(shù)與全微分參照答案sin(xy)lim(x,y)(0,a)x解:limsin(xy)=sin(xy)gxlimxyy=a(x,y)(0,a)(x,y)(0,a)17.求由下式?jīng)Q定的隱函數(shù)z對于x和y的一階偏導(dǎo)數(shù):xyze(xyz)。解:等式兩頭對x求偏導(dǎo)數(shù),得1ze(xyz)(1z)xx故z1。利用對稱性可得z1xy18.用拉格朗日法求條件極值:zx2y2,xy1(a0,b0)ab解:設(shè)F(x,y)x2y2(xy1),解方程組abF2x10xaF2y10ybxy1ab2a2b2ab2a2b可得a2b2,xa2b2,ya2b2。因為當(dāng)x或y時都有z。故函數(shù)只幸好有限處獲得極小值〔最小〕值:當(dāng)xab2,ya2b2時,函數(shù)獲得極小〔最小〕值za2b2a2b2a2b22ab19.求極限lim1x2y132sin(xy).x0xyy0解:原式1x2y1sin(xy)limx2yxyx0lim00lim0012
(1x2y1)(1x2yx2y(1x2y1)1sin(xy)1x2y1xy(2分).
1)sin(xy)(2分)xy(1分)-12-第八章偏導(dǎo)數(shù)與全微分參照答案20.設(shè)zf(x2y2,xy),求2z.xy解:zf1'2xf2'y2xf1'yf2',(2分)x2z2x[f11''(2y)f12''x]f2'y[f21''(2y)f22''x]xy4xyf11''2x2f12''f2'2y2f21''xyf22''(3分).21.求拋物面zx2y2到平面xyz10的近來距離。解:設(shè)M(x,y,z)在zx2y2上,M到xyz10的距離為d,那么|xyz1|(1分),d3d2(xyz1)2.3記L(x,y,z,)(xyz1)2(x2y2z),Lx2(xyz1)2x0Ly2(xyz1)2y0令2(xyz1)0(2分)LzLx2y2z0解得:xy1,z122
(2分).所以d1|1111|1(2分).32222322.求曲面zx2y2上與平面2x4yz0平行的切平面方程。解:曲面zx2y2的切平面的法向量為n1{2x,2y,1}(2分),平面2x4yz0的法向量為n2{2,4,1}.要使zx2y2切平面與平面2x4yz0平行,必有n1//n2,即-13-第八章偏導(dǎo)數(shù)與全微分參照答案2x2y1分).24(21解之得,x1,y2,進而z5(2分).所以為2(x1)4(y2)(z5)0,y23.函數(shù)zarctan,求dz|(1,1).z1yy1分),解:因為y2(2)x2y2(2x(1,1)x(1,1)212x(1,1)z11x1分),y(1,1)y2x2y2(21x(1,1)2x2(1,1)所以dz|1dx1dy(1分).(1,1)22xf(y)確立,求z。24.設(shè)函數(shù)zz(x,y)由方程x2y2z2xx解:(方法一)令F(x,y,z)x2y2z2xf(y).x那么Fx2xf(y)yf'(y),Fy2yf'(y),Fz2z(2分),xxxx所以zFxf(y)yf'(y)2xxxx(3分).xFz2z(方法二)方程x2y2z2xf(y)兩邊對x求導(dǎo),并注意z是x,y的函數(shù),得x2x2zzyyyyyyxf( )xf'( )(x2)f()f'(),xxxxx解得zf(y)yf'(y)2xxxx.x2z25a分紅兩個正數(shù)x,yxpqpq.怎樣將正數(shù)之和,使得為最大,此中、是的正-14-第八章偏導(dǎo)數(shù)與全微分參照答案數(shù)。解:由拉格朗日乘數(shù)法,令L(x,y,)xpyq(xya)(2分).Lxpxp1yq0由Lyqxpyq10(2分)Lxya0解得駐點(ap,aq)(2分).pqpq又由題意當(dāng)點(x,y)趨于界限x0或y0時,目標(biāo)函數(shù)f趨于零,所以連續(xù)函數(shù)f在駐點取最大值。所以當(dāng)xapq,yaq時,xpyq的值最大ppq26.設(shè)zf(x,y)g(u,v),ux3,vxy,此中f,g擁有一階連續(xù)偏導(dǎo)數(shù),求z.解:zuvxfx'gu'gv'(2分)xxxfx'3x2gu'yxy1gv'(3分).27.求曲線x2t2,ycos(t),z2lnt在對應(yīng)于t2點處的切線及法平面方程。解:當(dāng)t2時,對應(yīng)點的坐標(biāo)為(8,1,2ln2);又參數(shù)方程的切線方向向量為:n|t2{4t,sin(t),2}|t2{8,0,1}(2分),t故切線方程為x8y1z2ln2(2分),801x88(z2ln2)或10.y而法平面方程為8(x8)(z2ln2)0(2分).28.求函數(shù)uxy2z3在點M0(1,1,1)處方導(dǎo)游數(shù)的最大值和最小值。解:u在點M0(1,1,1)處沿方向l的方導(dǎo)游數(shù)為:u(y2z3cos2xyz3cos3xy2z2cos)|M0lM0cos2cos3cos(2分).令l0{cos,cos,cos},g{1,2,3},-15-第八章偏導(dǎo)數(shù)與全微分參照答案u000那么gl|g||l|cos,為g與l的夾角。要使
ul
取最大值,那么cos=1,即=0,也就是g與l0同向時,uM0l
取最大值,0即:當(dāng)l01{1,2,3}時,u14l
取最大值|g|14(3分).0同理,要使
ul
取最小值,那么cos=-1,即=,也就是g與l0反向時,uM0l
取最小0值,即:當(dāng)l01{1,2,3}時,u取最小值|g|14(3分).14lM029.設(shè)函數(shù)zf(x2y,exy),求z,z.xy解:設(shè)ux2y,vexy,那么u2xy,ux2,vyexy,vxexyxyxy故zfufv=2xyf+yexyfxuxvxuvzfufv=x2f+xexyfyuyvyuv30.設(shè)zzx,y是由x3y3z3xyz60所確立的隱函數(shù),求它在點〔1,2,-1〕及z處的偏導(dǎo)數(shù)xy的值。z3x2yzxM03z2xyz3y2xzyM032xyz
1分5,M0=(1,2,1)(3)M011分)5M0斜邊長為m的全部直角三角形中,求有最大周長的直角三角形直角邊的邊長.解:設(shè)兩條直角邊的邊長為x,y,周長為S,那么Smxy〔1分〕并知足x2y2m2.由-16-第八章偏導(dǎo)數(shù)與全微分參照答案F(x,y,)mxy(x2y2m2)〔2分〕F12x0x令F12y0〔3分〕yFx2y2m20解得xy2m2因為全部直角三角形的直角極點位于直徑為m的半圓周上,最小周長不存在,進而實詰問題只有最大值,此時有最大周長的直角三角形的邊長均是2m。2eusinv,而uzz32..設(shè)zxy,vxy,求x,yzzuzvxuxvx=eusinvyeucosv1=uysinvcosv〔3分〕ezzuzvyuyvy=eusinvxeucosv1=euxsinvcosv33..設(shè)zfx2y2,且f可微,求yzxz。xyz2xf(2分)z2yf(2分)yzxz0(2分)xyxy34.求曲面ezzxy3在點2,1,0處的切平面與法線的方程.fx,y,zezzxy3那么f1,f2,f0〔3分〕x2,1,0y2,1,0z2,1,0切平面方程為x22y10z00即x2y40〔2分〕-17-第八章偏導(dǎo)數(shù)與全微分參照答案x2y1法線方程為12〔2分〕z035.將正數(shù)12分紅三個正數(shù)x,y,z之和,使得ux3y2z為最大.〔8分〕Fx3x2y2z0解:令F(x,y,z)x3y2z(xyz12),那么Fy2x3yz0〔3分〕Fzx3y20xyz12解得獨一駐點(6,4,2)〔4分〕,故最大值為umax634
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度房地產(chǎn)開發(fā)精美合同協(xié)議范本(品質(zhì)保障版)3篇
- 2024版幼兒娛樂場所承包合同條款匯編版
- 二零二五版租賃住房合同糾紛調(diào)解規(guī)范3篇
- 2024版汽車租賃委托付款協(xié)議書
- 2025年度版權(quán)監(jiān)測合同標(biāo)的:盜版監(jiān)測與維權(quán)3篇
- 二零二五版勞動合同主體變更與員工培訓(xùn)補貼協(xié)議3篇
- 2024年科技成果轉(zhuǎn)化與合作合同
- 二零二五年度跨境電商金融合同履行與跨境支付服務(wù)3篇
- 二零二五年度生態(tài)環(huán)保庫房租賃合同3篇
- 二零二五年度房地產(chǎn)項目招投標(biāo)及合同簽訂協(xié)議3篇
- 餐飲行業(yè)智慧餐廳管理系統(tǒng)方案
- 2025年度生物醫(yī)藥技術(shù)研發(fā)與許可協(xié)議3篇
- 電廠檢修安全培訓(xùn)課件
- 殯葬改革課件
- 2024企業(yè)答謝晚宴會務(wù)合同3篇
- 雙方個人協(xié)議書模板
- 車站安全管理研究報告
- 瑪米亞RB67中文說明書
- 五年級數(shù)學(xué)(小數(shù)四則混合運算)計算題專項練習(xí)及答案
- 2024年鋼鐵貿(mào)易行業(yè)前景分析:鋼鐵貿(mào)易行業(yè)發(fā)展趨勢推動行業(yè)可持續(xù)發(fā)展
- 節(jié)前物業(yè)安全培訓(xùn)
評論
0/150
提交評論