![高中數(shù)學(xué)必修一知識點(diǎn)(樹狀圖分布)_第1頁](http://file4.renrendoc.com/view/0ec8d3ee1e7cf5568f66f544e8cc03b8/0ec8d3ee1e7cf5568f66f544e8cc03b81.gif)
![高中數(shù)學(xué)必修一知識點(diǎn)(樹狀圖分布)_第2頁](http://file4.renrendoc.com/view/0ec8d3ee1e7cf5568f66f544e8cc03b8/0ec8d3ee1e7cf5568f66f544e8cc03b82.gif)
![高中數(shù)學(xué)必修一知識點(diǎn)(樹狀圖分布)_第3頁](http://file4.renrendoc.com/view/0ec8d3ee1e7cf5568f66f544e8cc03b8/0ec8d3ee1e7cf5568f66f544e8cc03b83.gif)
![高中數(shù)學(xué)必修一知識點(diǎn)(樹狀圖分布)_第4頁](http://file4.renrendoc.com/view/0ec8d3ee1e7cf5568f66f544e8cc03b8/0ec8d3ee1e7cf5568f66f544e8cc03b84.gif)
![高中數(shù)學(xué)必修一知識點(diǎn)(樹狀圖分布)_第5頁](http://file4.renrendoc.com/view/0ec8d3ee1e7cf5568f66f544e8cc03b8/0ec8d3ee1e7cf5568f66f544e8cc03b85.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高中數(shù)學(xué)必修一知識點(diǎn)(樹狀圖分布)高中數(shù)學(xué)必修一知識點(diǎn)(樹狀圖分布)高中數(shù)學(xué)必修一知識點(diǎn)(樹狀圖分布)xxx公司高中數(shù)學(xué)必修一知識點(diǎn)(樹狀圖分布)文件編號:文件日期:修訂次數(shù):第1.0次更改批準(zhǔn)審核制定方案設(shè)計(jì),管理制度高一數(shù)學(xué)必修1知識網(wǎng)絡(luò)集合函數(shù)附:一、函數(shù)的定義域的常用求法:1、分式的分母不等于零;2、偶次方根的被開方數(shù)大于等于零;3、對數(shù)的真數(shù)大于零;4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;5、三角函數(shù)正切函數(shù)中;余切函數(shù)中;6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。二、函數(shù)的解析式的常用求法:1、定義法;2、換元法;3、待定系數(shù)法;4、函數(shù)方程法;5、參數(shù)法;6、配方法三、函數(shù)的值域的常用求法:1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調(diào)性法;7、直接法四、函數(shù)的最值的常用求法:1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調(diào)性法五、函數(shù)單調(diào)性的常用結(jié)論:1、若均為某區(qū)間上的增(減)函數(shù),則在這個(gè)區(qū)間上也為增(減)函數(shù)2、若為增(減)函數(shù),則為減(增)函數(shù)3、若與的單調(diào)性相同,則是增函數(shù);若與的單調(diào)性不同,則是減函數(shù)。4、奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。六、函數(shù)奇偶性的常用結(jié)論:1、如果一個(gè)奇函數(shù)在處有定義,則,如果一個(gè)函數(shù)既是奇函數(shù)又是偶函數(shù),則(反之不成立)2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。4、兩個(gè)函數(shù)和復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。5、若函數(shù)的定義域關(guān)于原點(diǎn)對稱,則可以表示為,該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。表1指數(shù)函數(shù)對數(shù)數(shù)函數(shù)定義域值域圖象性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國塑料鏈條市場調(diào)查研究報(bào)告
- 2025至2031年中國非離子表面活性劑行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年竹杓項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國皮箱包袋行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年汽車電工電子實(shí)驗(yàn)箱項(xiàng)目可行性研究報(bào)告
- 2025年復(fù)合編織袋項(xiàng)目可行性研究報(bào)告
- 2025年便攜水煙斗項(xiàng)目可行性研究報(bào)告
- 2025至2030年黑膽石手鏈項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年防靜電粉紅袋項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年塑料化纖粉碎混煉機(jī)項(xiàng)目投資價(jià)值分析報(bào)告
- 2025版茅臺(tái)酒出口業(yè)務(wù)代理及銷售合同模板4篇
- 新版《醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范》(2024)培訓(xùn)試題及答案
- 2025年人教版數(shù)學(xué)五年級下冊教學(xué)計(jì)劃(含進(jìn)度表)
- 北師大版七年級上冊數(shù)學(xué)期末考試試題及答案
- 初中信息技術(shù)課堂中的項(xiàng)目式學(xué)習(xí)實(shí)踐研究結(jié)題報(bào)告
- 《工業(yè)廢水臭氧催化氧化深度處理技術(shù)規(guī)程》(T-SDEPI 030-2022)
- 2024安全事故案例
- 生日快樂祝福含生日歌相冊課件模板
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊 期末綜合卷(含答案)
- 天津市部分區(qū)2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 2024年考研管理類綜合能力(199)真題及解析完整版
評論
0/150
提交評論