黑龍江省哈爾濱市建平校2022年中考數(shù)學(xué)全真模擬試卷含解析及點(diǎn)睛_第1頁
黑龍江省哈爾濱市建平校2022年中考數(shù)學(xué)全真模擬試卷含解析及點(diǎn)睛_第2頁
黑龍江省哈爾濱市建平校2022年中考數(shù)學(xué)全真模擬試卷含解析及點(diǎn)睛_第3頁
黑龍江省哈爾濱市建平校2022年中考數(shù)學(xué)全真模擬試卷含解析及點(diǎn)睛_第4頁
黑龍江省哈爾濱市建平校2022年中考數(shù)學(xué)全真模擬試卷含解析及點(diǎn)睛_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列圖案中,是軸對稱圖形的是()A. B. C. D.2.蘋果的單價(jià)為a元/千克,香蕉的單價(jià)為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元3.如圖,⊙O的直徑AB與弦CD的延長線交于點(diǎn)E,若DE=OB,∠AOC=84°,則∠E等于()A.42° B.28° C.21° D.20°4.△ABC在正方形網(wǎng)格中的位置如圖所示,則cosB的值為()A. B. C. D.25.如果a﹣b=5,那么代數(shù)式(﹣2)?的值是()A.﹣ B. C.﹣5 D.56.﹣2018的絕對值是()A.±2018 B.﹣2018 C.﹣ D.20187.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點(diǎn)P,則∠P=()A.90°-α B.90°+α C. D.360°-α8.直線y=3x+1不經(jīng)過的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.對于一組統(tǒng)計(jì)數(shù)據(jù):1,6,2,3,3,下列說法錯(cuò)誤的是()A.平均數(shù)是3 B.中位數(shù)是3 C.眾數(shù)是3 D.方差是2.510.如圖,在菱形ABCD中,E是AC的中點(diǎn),EF∥CB,交AB于點(diǎn)F,如果EF=3,那么菱形ABCD的周長為()A.24 B.18 C.12 D.9二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.某排水管的截面如圖,已知截面圓半徑OB=10cm,水面寬AB是16cm,則截面水深CD為_____.12.如圖,點(diǎn)A在雙曲線上,AB⊥x軸于B,且△AOB的面積S△AOB=2,則k=______.13.如圖,已知等邊△ABC的邊長為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),使AE=CF,連接AF、BE相交于點(diǎn)P,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動到點(diǎn)C時(shí),點(diǎn)P經(jīng)過點(diǎn)的路徑長為__.14.如果兩個(gè)相似三角形的面積的比是4:9,那么它們對應(yīng)的角平分線的比是_____.15.如圖,以銳角△ABC的邊AB為直徑作⊙O,分別交AC,BC于E、D兩點(diǎn),若AC=14,CD=4,7sinC=3tanB,則BD=_____.16.若關(guān)于x、y的二元一次方程組的解是,則關(guān)于a、b的二元一次方程組的解是_______.三、解答題(共8題,共72分)17.(8分)如圖,拋物線y=﹣x2﹣x+4與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C.(1)求點(diǎn)A,點(diǎn)B的坐標(biāo);(2)P為第二象限拋物線上的一個(gè)動點(diǎn),求△ACP面積的最大值.18.(8分)已知:如圖,在△OAB中,OA=OB,⊙O經(jīng)過AB的中點(diǎn)C,與OB交于點(diǎn)D,且與BO的延長線交于點(diǎn)E,連接EC,CD.(1)試判斷AB與⊙O的位置關(guān)系,并加以證明;(2)若tanE=,⊙O的半徑為3,求OA的長.19.(8分)拋一枚質(zhì)地均勻六面分別刻有1、2、3、4、5、6點(diǎn)的正方體骰子兩次,若記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則以方程組的解為坐標(biāo)的點(diǎn)在第四象限的概率為_____.20.(8分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是⊙O外一點(diǎn)且∠DBC=∠A,連接OE延長與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.(1)求證:BC是⊙O的切線;(2)若⊙O的半徑為6,BC=8,求弦BD的長.21.(8分)為提高城市清雪能力,某區(qū)增加了機(jī)械清雪設(shè)備,現(xiàn)在平均每天比原來多清雪300立方米,現(xiàn)在清雪4000立方米所需時(shí)間與原來清雪3000立方米所需時(shí)間相同,求現(xiàn)在平均每天清雪量.22.(10分)如圖,△ABC中AB=AC,請你利用尺規(guī)在BC邊上求一點(diǎn)P,使△ABC~△PAC不寫畫法,(保留作圖痕跡).23.(12分)三輛汽車經(jīng)過某收費(fèi)站下高速時(shí),在2個(gè)收費(fèi)通道A,B中,可隨機(jī)選擇其中的一個(gè)通過.(1)三輛汽車經(jīng)過此收費(fèi)站時(shí),都選擇A通道通過的概率是;(2)求三輛汽車經(jīng)過此收費(fèi)站時(shí),至少有兩輛汽車選擇B通道通過的概率.24.如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線AC下方拋物線上的動點(diǎn).(1)求拋物線的解析式;(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)軸對稱圖形的定義,逐一進(jìn)行判斷.【詳解】A、C是中心對稱圖形,但不是軸對稱圖形;B是軸對稱圖形;D不是對稱圖形.故選B.【點(diǎn)睛】本題考查的是軸對稱圖形的定義.2、C【解析】

用單價(jià)乘數(shù)量得出買2千克蘋果和3千克香蕉的總價(jià),再進(jìn)一步相加即可.【詳解】買單價(jià)為a元的蘋果2千克用去2a元,買單價(jià)為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【點(diǎn)睛】本題主要考查列代數(shù)式,總價(jià)=單價(jià)乘數(shù)量.3、B【解析】

利用OB=DE,OB=OD得到DO=DE,則∠E=∠DOE,根據(jù)三角形外角性質(zhì)得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC進(jìn)行計(jì)算即可.【詳解】解:連結(jié)OD,如圖,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,

∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故選:B.【點(diǎn)睛】本題考查了圓的認(rèn)識:掌握與圓有關(guān)的概念(

弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).也考查了等腰三角形的性質(zhì).4、A【解析】

解:在直角△ABD中,BD=2,AD=4,則AB=,則cosB=.故選A.5、D【解析】【分析】先對括號內(nèi)的進(jìn)行通分,進(jìn)行分式的加減法運(yùn)算,然后再進(jìn)行分式的乘除法運(yùn)算,最后把a(bǔ)-b=5整體代入進(jìn)行求解即可.【詳解】(﹣2)?===a-b,當(dāng)a-b=5時(shí),原式=5,故選D.6、D【解析】分析:根據(jù)絕對值的定義解答即可,數(shù)軸上,表示一個(gè)數(shù)a的點(diǎn)到原點(diǎn)的距離叫做這個(gè)數(shù)的絕對值.詳解:﹣2018的絕對值是2018,即.故選D.點(diǎn)睛:本題考查了絕對值的定義,熟練掌握絕對值的定義是解答本題的關(guān)鍵,正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0.7、C【解析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點(diǎn):1.多邊形內(nèi)角與外角2.三角形內(nèi)角和定理.8、D【解析】

利用兩點(diǎn)法可畫出函數(shù)圖象,則可求得答案.【詳解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直線與x軸交于點(diǎn)(-,0),與y軸交于點(diǎn)(0,1),其函數(shù)圖象如圖所示,∴函數(shù)圖象不過第四象限,故選:D.【點(diǎn)睛】本題主要考查一次函數(shù)的性質(zhì),正確畫出函數(shù)圖象是解題的關(guān)鍵.9、D【解析】

根據(jù)平均數(shù)、中位數(shù)、眾數(shù)和方差的定義逐一求解可得.【詳解】解:A、平均數(shù)為1+6+2+3+35B、重新排列為1、2、3、3、6,則中位數(shù)為3,正確;C、眾數(shù)為3,正確;D、方差為15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故選:D.【點(diǎn)睛】本題考查了眾數(shù)、平均數(shù)、中位數(shù)、方差.平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個(gè)數(shù)(或最中間兩個(gè)數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.10、A【解析】【分析】易得BC長為EF長的2倍,那么菱形ABCD的周長=4BC問題得解.【詳解】∵E是AC中點(diǎn),∵EF∥BC,交AB于點(diǎn)F,∴EF是△ABC的中位線,∴BC=2EF=2×3=6,∴菱形ABCD的周長是4×6=24,故選A.【點(diǎn)睛】本題考查了三角形中位線的性質(zhì)及菱形的周長公式,熟練掌握相關(guān)知識是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、4cm.【解析】

由題意知OD⊥AB,交AB于點(diǎn)C,由垂徑定理可得出BC的長,在Rt△OBC中,根據(jù)勾股定理求出OC的長,由CD=OD-OC即可得出結(jié)論.【詳解】由題意知OD⊥AB,交AB于點(diǎn)E,∵AB=16cm,∴BC=AB=×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴OC=(cm),∴CD=OD-OC=10-6=4(cm)故答案為4cm.【點(diǎn)睛】本題考查的是垂徑定理的應(yīng)用,根據(jù)題意在直角三角形運(yùn)用勾股定理列出方程是解答此題的關(guān)鍵.12、-4【解析】:由反比例函數(shù)解析式可知:系數(shù),∵S△AOB=2即,∴;又由雙曲線在二、四象限k<0,∴k=-413、π.【解析】

由等邊三角形的性質(zhì)證明△AEB≌△CFA可以得出∠APB=120°,點(diǎn)P的路徑是一段弧,由弧線長公式就可以得出結(jié)論.【詳解】:∵△ABC為等邊三角形,

∴AB=AC,∠C=∠CAB=60°,

又∵AE=CF,

在△ABE和△CAF中,,

∴△ABE≌△CAF(SAS),

∴∠ABE=∠CAF.

又∵∠APE=∠BPF=∠ABP+∠BAP,

∴∠APE=∠BAP+∠CAF=60°.

∴∠APB=180°-∠APE=120°.

∴當(dāng)AE=CF時(shí),點(diǎn)P的路徑是一段弧,且∠AOB=120°,

又∵AB=6,

∴OA=2,

點(diǎn)P的路徑是l=,

故答案為.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,弧線長公式的運(yùn)用,解題的關(guān)鍵是證明三角形全等.14、2:1【解析】先根據(jù)相似三角形面積的比是4:9,求出其相似比是2:1,再根據(jù)其對應(yīng)的角平分線的比等于相似比,可知它們對應(yīng)的角平分線比是2:1.故答案為2:1.點(diǎn)睛:本題考查的是相似三角形的性質(zhì),即相似三角形對應(yīng)邊的比、對應(yīng)高線的比、對應(yīng)角平分線的比、周長的比都等于相似比;面積的比等于相似比的平方.15、1【解析】如圖,連接AD,根據(jù)圓周角定理可得AD⊥BC.在Rt△ADC中,sinC=ADAC;在Rt△ABD中,tanB=ADBD.已知7sinC=3tanB,所以7×ADAC=3×ADBD,又因點(diǎn)睛:此題主要考查的是圓周角定理和銳角三角函數(shù)的定義,以公共邊AD為橋梁,利用銳角三角函數(shù)的定義得到tanB和sinC的式子是解決問題的關(guān)鍵.16、【解析】分析:利用關(guān)于x、y的二元一次方程組的解是可得m、n的數(shù)值,代入關(guān)于a、b的方程組即可求解,利用整體的思想找到兩個(gè)方程組的聯(lián)系再求解的方法更好.詳解:∵關(guān)于x、y的二元一次方程組的解是,∴將解代入方程組可得m=﹣1,n=2∴關(guān)于a、b的二元一次方程組整理為:解得:點(diǎn)睛:本題考查二元一次方程組的求解,重點(diǎn)是整體考慮的數(shù)學(xué)思想的理解運(yùn)用在此題體現(xiàn)明顯.三、解答題(共8題,共72分)17、(1)A(﹣4,0),B(2,0);(2)△ACP最大面積是4.【解析】

(1)令y=0,得到關(guān)于x的一元二次方程﹣x2﹣x+4=0,解此方程即可求得結(jié)果;(2)先求出直線AC解析式,再作PD⊥AO交AC于D,設(shè)P(t,﹣t2﹣t+4),可表示出D點(diǎn)坐標(biāo),于是線段PD可用含t的代數(shù)式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP關(guān)于t的函數(shù)關(guān)系式,繼而可求出△ACP面積的最大值.【詳解】(1)解:設(shè)y=0,則0=﹣x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D設(shè)AC解析式y(tǒng)=kx+b∴解得:∴AC解析式為y=x+4.設(shè)P(t,﹣t2﹣t+4)則D(t,t+4)∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2∴S△ACP=PD×4=﹣(t+2)2+4∴當(dāng)t=﹣2時(shí),△ACP最大面積4.【點(diǎn)睛】本題考查二次函數(shù)綜合,解題的關(guān)鍵是掌握待定系數(shù)法進(jìn)行求解.18、(1)AB與⊙O的位置關(guān)系是相切,證明見解析;(2)OA=1.【解析】

(1)先判斷AB與⊙O的位置關(guān)系,然后根據(jù)等腰三角形的性質(zhì)即可解答本題;(2)根據(jù)題三角形的相似可以求得BD的長,從而可以得到OA的長.【詳解】解:(1)AB與⊙O的位置關(guān)系是相切,證明:如圖,連接OC.∵OA=OB,C為AB的中點(diǎn),∴OC⊥AB.∴AB是⊙O的切線;(2)∵ED是直徑,∴∠ECD=90°.∴∠E+∠ODC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.∴.∴BC2=BD?BE.∵,∴.∴.設(shè)BD=x,則BC=2x.又BC2=BD?BE,∴(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=2+3=1.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系、等腰三角形的性質(zhì)、三角形的相似,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.19、【解析】

解方程組,根據(jù)條件確定a、b的范圍,從而確定滿足該條件的結(jié)果個(gè)數(shù),利用古典概率的概率公式求出方程組只有一個(gè)解的概率.【詳解】∵,得若b>2a,即a=2,3,4,5,6

b=4,5,6符合條件的數(shù)組有(2,5)(2,6)共有2個(gè),若b<2a,符合條件的數(shù)組有(1,1)共有1個(gè),∴概率p=.故答案為:.【點(diǎn)睛】本題主要考查了古典概率及其概率計(jì)算公式的應(yīng)用.20、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點(diǎn),∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點(diǎn)睛:本題主要考查圓中的計(jì)算問題,解題的關(guān)鍵在于清楚角度的轉(zhuǎn)換方式和弦長的計(jì)算方法.21、現(xiàn)在平均每天清雪量為1立方米.【解析】分析:設(shè)現(xiàn)在平均每天清雪量為x立方米,根據(jù)等量關(guān)系“現(xiàn)在清雪4000立方米所需時(shí)間與原來清雪3000立方米所需時(shí)間相同”列分式方程求解.詳解:設(shè)現(xiàn)在平均每天清雪量為x立方米,由題意,得解得x=1.經(jīng)檢驗(yàn)x=1是原方程的解,并符合題意.答:現(xiàn)在平均每天清雪量為1立方米.點(diǎn)睛:此題主要考查了分式方程的應(yīng)用,關(guān)鍵是確定問題的等量關(guān)系,注意解分式方程的時(shí)候要進(jìn)行檢驗(yàn).22、見解析【解析】

根據(jù)題意作∠CBA=∠CAP即可使得△ABC~△PAC.【詳解】如圖,作∠CBA=∠CAP,P點(diǎn)為所求.【點(diǎn)睛】此題主要考查相似三角形的尺規(guī)作圖,解題的關(guān)鍵是作一個(gè)角與已知角相等.23、(1);(2)【解析】

(1)用樹狀圖分3次實(shí)驗(yàn)列舉出所有情況,再看3輛車都選擇A通道通過的情況數(shù)占總情況數(shù)的多少即可;

(2)由(1)可知所有可能的結(jié)果數(shù)目,再看至少有兩輛汽車選擇B通道通過的情況數(shù)占總情況數(shù)的多少即可.【詳解】解:(1)畫樹狀圖得:共8種情況,甲、乙、丙三輛車都選擇A通道通過的情況數(shù)有1種,所以都選擇A通道通過的概率為,故答案為:;(2)∵共有8種等可能的情況,其中至少有兩輛汽車選擇B通道通過的有4種情況,∴至少有兩輛汽車選擇B通道通過的概率為.【點(diǎn)睛】考查了概率的求法;用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比;得到所求的情況數(shù)是解決本題的關(guān)鍵.24、(1)拋物線的解析式為y=x2-2x+1,(2)四邊形AECP的面積的最大值是,點(diǎn)P(,﹣);(3)Q(4,1)或(-3,1).【解析】

(1)把點(diǎn)A,B的坐標(biāo)代入拋物線的解析式中,求b,c;(2)設(shè)P(m,m2?2m+1),根據(jù)S四邊形AECP=S△AEC+S△APC,把S四邊形AECP用含m式子表示,根據(jù)二次函數(shù)的性質(zhì)求解;(3)設(shè)Q(t,1),分別求出點(diǎn)A,B,C,P的坐標(biāo),求出AB,BC,CA;用含t的式子表示出PQ,CQ,判斷出∠BAC=∠PCA=45°,則要分兩種情況討論,根據(jù)相似三角形的對應(yīng)邊成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論