版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1CH1:RandomProcessesIntroductionMathematicalDefinitionofaRandomProcessStationaryProcessesMean,Correlation,andCovarianceFunctionsErgodicProcessesTransmissionofaRandomProcessThroughaLinearTime-InvariantFilterPowerSpectralDensityGaussianProcessNoiseNarrowbandNoiseRepresentationofNarrowbandNoiseinTermsofIn-phaseandQuadratureComponentsRepresentationofNarrowbandNoiseinTermsofEnvelopeandPhaseComponentsSineWavePlusNarrowbandNoiseComputerExperiments:Flat-FadingChannelSummaryandDiscussion21.1IntroductionTwomathematicalmodelsDeterministicStochastic(orrandom)Receivedsignalinacommunicationsystemusuallyconsistsof:Information-bearingsignalRandominterferenceChannelnoise
DescribingthesignalusingstatisticalparametersAveragepower,powerspectraldensity,…3Random(stochastic)processPropertiesFunctionoftimeRandomDefinitionEnsembleoftimefunctionsAprobabilityrule1.2MathematicalDefinitionofaRandomProcess41.2MathematicalDefinitionofaRandomProcess(Cont’d)Figure1.1Anensembleofsamplefunctions.Someconcepts:SamplespaceSRandomprocessX(t,S)=X(t)SamplepointsjRealization(samplefunction)
xj(t)=X(t,sj)Randomvariable51.3StationaryProcessThejointdistributionfunction:Strictlystationary:Foralltimeshifts
,allk,andallpossiblechoicesofobservationtimest1,…,tk,equation(1)isalwaystrue.Twospecialcases(wide-sensestationary):6Example1.1Three
spatialwindowslocatedattimest1,t2,andt3,theprobabilityofthejointevent:
Intermsofthejointdistributionfunction,thisprobabilityequals:1.3StationaryProcessFigure1.2Illustratingtheprobabilityofajointevent.71.3StationaryProcessFigure1.3IllustratingtheconceptofstationaryinExample1.1.81.4Mean,Correlation,andCovarianceFunctionsMean:Autocorrelationfunction:Autocovariancefunction:(Stationary)Cross-correlationfunction:91.4Mean,Correlation,andCovarianceFunctions(Cont’d)Themeanandautocorrelationfunctionprovideapartialdescriptionofarandomprocess.Wide-sensestationaryMeanisaconstantandautocorrelationfunctiondependsonlyontimedifference.OftenusedinpracticeNotnecessarystrictlystationary,andviseverse.10PropertiesoftheAutocorrelationFunctionProperties:DefiningautocorrelationfunctionofastationaryprocessX(t)as:11PropertiesoftheAutocorrelationFunction(Cont’d)Figure1.4Illustratingtheautocorrelationfunctionsofslowlyandrapidlyfluctuatingrandomprocesses.12Example1.2SinusoidalWavewithRandomPhaseAandfcareconstants,and13Example1.2(Cont’d)TheautocorrelationfunctionofX(t)is:14Example1.2(Cont’d)
Figure1.5Autocorrelationfunctionofasinewavewithrandomphase.15Example1.3RandomBinaryWave
Figure1.6Samplefunctionofrandombinarywave.16Example1.3(Cont’d)Figure1.7Autocorrelationfunctionofrandombinarywave.17Cross-CorrelationFunctionsTworandomprocessesX(t)andY(t)withautocorrelationfunctionsRX(t,u)andRY(t,u),thetwocross-correlationfunctionsofX(t)andY(t)aredefinedby:Thecorrelationmatrix:Asymmetryrelationship:18Example1.4Quadrature-ModulatedProcesses
19Example1.4(Cont’d)
201.5ErgodicProcessesUsingtimeaveragestoapproximateensembleaverages.Consideringasamplefunctionx(t)ofastationaryprocessX(t)inanobservationwindow–TtT:(TheDCvalue)TimeaverageX(T)
representsanunbiasedestimateoftheensemble-averagedmeanX.211.5ErgodicProcesses(Cont’d)AprocessX(t)isergodicinthemeaniftwoconditionsaresatisfied:AprocessX(t)isergodicintheautocorrelationfunctioniftwoconditionsaresatisfied:Forarandomprocesstobeergodic,ithastobestationary;butastationaryrandomprocessisnotnecessarilyergodic.221.6TransmissionofaRandomProcessThroughaLinearTime-InvariantFilterFigure1.8transmissionofarandomprocessthroughalineartime-invariantfilter.231.6TransmissionThroughaLinearTime-InvariantFilter(Cont’d)241.7PowerSpectralDensity(PSD)25DefinitionofPSDThepowerspectraldensity(orpowerspectrum)istheFouriertransformoftheautocorrelationfunction.Asaresult,IfThenandfissmall,26PropertiesofPSDThePSDandtheautocorrelationfunctionformaFourier-transformpair.TheEinstein-Wiener-KhintchineRelations27PropertiesofPSD(Cont’d)isaprobabilitydensityfunction.28PSDExample1Sinusoidalwavewithrandomphase29PSDExample1(Cont’d)Figure1.10Powerspectraldensityofsinewavewithrandomphase.30PSDExample2Randombinarywave31PSDExample2(Cont’d)Figure1.11Powerspectraldensityofrandombinarywave.32PSDExample3Mixingofarandomprocesswithasinusoidalprocess33PSD’sofInput/OutputProcesses34PSDandtheMagnitudeSpectrumWeareconsideringanergodicstationaryprocess.Fouriertransformablerequiresabsolutelyintegrable,thatiswhichcannotbesatisfiedbyastationaryfunction.Soweuseatruncatedsegmentofx(t),whoseFouriertransformis35PSDandtheMagnitudeSpectrum(Cont’d)ThePeriodogram36PSDandtheMagnitudeSpectrum(Cont’d)37Cross-SpectralDensities(CSD)Properties38CSDExample139ConceptsStatisticallyindependentanduncorrelatedStatisticallyindependent:F(X,Y)=F(X)F(Y)Uncorrelated:CXY()=0Independentstatisticsarealwaysuncorrelated,buttheconverseisnotnecessarilytrue.40CSDExample2Figure1.12Apairofseparatelineartime-invariantfilters.411.8GaussianProcessDefinition:SupposeSisthesetoflinearfunctionalsofarandomprocessX(t)withfinitemean-squarevalue,ifeveryelementinSisaGaussian-distributedrandomvariable,thenX(t)isaGaussianprocess.Inshort,X(t)isaGaussianprocessifeverylinearfunctionalofX(t)isaGaussianrandomvariable.EasytoprocessandfitformanyphysicalphenomenaAlinearfunctionalofX(t)pdfofGaussiandistribution:pdfofnormalizedGaussiandistributionYN(0,1):42GaussianDistributionFigure1.13NormalizedGaussiandistribution.43CentralLimitTheoremIndependentlyandidenticallydistributed(i.i.d.)randomvariablesXi,i=1,2,…TheXiarestatisticallyindependentTheXihavethesameprobabilitydistributionYiarenormalizedversionofXi Yi=(Xi-x)/X,i=1,2,…Thecentrallimittheorem:44PropertiesofaGaussianProcessIftheinputprocesstoastablelinearfilterisGaussian,thentheoutputprocessisalsoGaussian.ThesetofrandomvariablesobtainedbysamplingaGaussianrandomprocessatdifferenttimesarejointlyGaussian.(CanbeusedasadefinitionofGaussianprocess)DeterminantofMeanvectorCovariancematrix45PropertiesofaGaussianProcess(Cont’d)IfaGaussianprocessisstationary,thentheprocessisalsostrictlystationary.IfasetofrandomvariablesobtainedbysamplingaGaussianrandomprocessatdifferenttimeareuncorrelated,thentheyarestatisticallyindependent.461.9NoiseExternalorinternaltothesystemShotnoiseArisingduetothediscretenatureofcurrentflowinsomeelectronicdevicesNumberofarriversinapre-definedintervalfollowsPoissondistributionThermalNoiseArisingduetorandommotionofelectronsinaconductorUsuallymodeledusingtheThéveninequivalentcircuitortheNortonequivalentcircuitAvailablenoisepoweriskTfwatts.At20oC,kT-174dBm/Hz47ModelingThermalNoiseFigure1.15Modelsofanoisyresistor.(a)Théveninequivalentcircuit.(b)Nortonequivalentcircuit.48WhiteNoiseAnidealizedformofnoisefornoiseanalysisofcommunicationsystemsFigure1.16Characteristicsofwhitenoise.(a)Powerspectraldensity.(b)Autocorrelationfunction.Boltzmann’sconstantEquivalentnoisetemperature49WhiteNoise(Cont’d)SamplesatdifferenttimesonawhitenoiseareuncorrelatedIfthewhitenoiseisGaussian(calledwhiteGaussiannoise),thesamplesarealsostatisticallyindependent(theultimaterandomness)Aslongasthebandwidthofanoiseprocessattheinputofasystemisappreciablylargerthanthatofthesystemitself,wemaymodelthenoiseprocessaswhitenoise.50Example1.10IdealLow-PassFilteredWhiteNoiseFigure1.17Characteristicsoflow-passfilteredwhitenoise.(a)Powerspectraldensity.(b)Autocorrelationfunction.51Example1.11CorrelationofWhiteNoisewithaSinusoidalWave52RepresentationsofBand-PassSignals
(Appendix2.3,2.4)Aband-passsignalisdefinedas:Hilberttransform53Band-PassSignals(Cont’d)Pre-envelope54NarrowbandSignalsFig.A2.4
Magnitudespectrumof(a)band-passsignal,(b)pre-envelope,(c)complexenvelope.551.10NarrowbandNoiseFig.1.18(a)Powerspectraldensityofnarrowbandnoise.(b)Samplefunctionofnarrowbandnoise.56NarrowbandNoise(Cont’d)Tworepresentations:In-phaseandquadraturecomponentsEnvelopandphaseEachrepresentationtotallydescribesthenoiseprocess.571.11RepresentationofNarrowbandNoiseinTermsof
In-PhaseandQuadratureComponentsThecanonicalrepresentationofnarrowbandnoisen(t)nI(t):thein-phasecomponentnQ(t):thequadraturecomponentTheyarebothlow-passsignals.Theyarefullyrepresentativeofn(t),exceptfc.58PropertiesoftheIn-PhaseandQuadratureComponentsofaNarrowbandNoiseZeormeanIfn(t)isGaussian,thennI(t)andnQ(t)arejointlyGuassianIfn(t)isstationary,thennI(t)andnQ(t)arejointlystationary59Properties(Cont’d)nI(t)andnQ(t)havethesamepowerspectraldensity60Properties(Cont’d)nI(t)andnQ(t)havethesamevarianceasn(t)Thecross-spectraldensityofnI(t)andnQ(t)ispurelyimaginary61Properties(Cont’d)Ifn(t)isGaussiananditspowerspectraldensitySN(f)issymmetricaboutthemid-bandfrequencyfc,thennI(t)andnQ(t)arestatisticallyindependent.62AnalyzerandSynthesizerFig.1.19(a)Extractionofin-phaseandquadraturecomponentsofanarrowbandprocess.(b)Generationofanarrowbandprocessfromitsin-phaseandquadraturecomponents.63Example1.12:IdealBand-PassFilteredWhiteNoise64Example1.12(Cont’d)Fig.1.20Characteristicsofidealband-passfilteredwhitenoise.
(a)Powerspectraldensity,
(b)Autocorrelationfunction,
(c)Powerspectraldensityofin-phaseandquadraturecomponents.651.12RepresentationofNarrowbandNoiseinTermsofEnvelopeandPhaseComponentsTheenvelopeofn(t)Thephaseofn(t)Theenveloper(t)andphase(t)arebothsamplefunctionsoflow-passrandomprocesses.66ProbabilityDistributionsoftheEnvelope
andPhaseComponentsTheprobabilitydistributionsarederivedfromthoseofNI(t)andNQ(t).67ProbabilityDistributions(Cont’d)Fig.1.21Illustratingthecoordinatesystemforrepresentationofnarrowbandnoise:(a)intermsofin-phaseandquadraturecomponents,and(b)intermsofenvelopeandphase.DefineThen68ProbabilityDistributions(Cont’d)Rayleighdistribution69ProbabilityDistributions(Cont’d)Fig.1.22
NormalizedRayleighdistribution.701.13SineWavePlusNarrowbandNoiseAssumi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025民辦幼兒園教師聘用合同書范本
- 2025監(jiān)理工程師《合同管理》考點合同生效時間的規(guī)定
- 二零二五年度醫(yī)療項目項目經(jīng)理委托合同3篇
- 二零二五年度互聯(lián)網(wǎng)金融服務公司股權及業(yè)務轉(zhuǎn)讓合同3篇
- 2025年度紙裝修設計創(chuàng)新技術應用合同3篇
- 2025年度企業(yè)財務分析與稅務籌劃咨詢服務合同2篇
- 2025年度醫(yī)療機構與執(zhí)業(yè)藥師簽訂的藥品質(zhì)量追溯體系合作協(xié)議3篇
- 2025年度展臺搭建與展會現(xiàn)場布置合同3篇
- 二零二五年度軌道交通設備維修保養(yǎng)協(xié)議3篇
- 2025年度養(yǎng)殖技術培訓與推廣合作合同3篇
- 冶煉煙氣制酸工藝設計規(guī)范
- 《上帝擲骰子嗎:量子物理史話》超星爾雅學習通章節(jié)測試答案
- Unit13 同步教學設計2023-2024學年人教版九年級英語全冊
- 2023-2024學年河北省保定市滿城區(qū)八年級(上)期末英語試卷
- 2024成都中考數(shù)學第一輪專題復習之專題四 幾何動態(tài)探究題 教學課件
- 2024合同范本之太平洋保險合同條款
- 萬用表的使用
- TDT1062-2021《社區(qū)生活圈規(guī)劃技術指南》
- GB/T 12959-2024水泥水化熱測定方法
- 《商務禮儀》試題及答案大全
- 《核電廠焊接材料評定與驗收標準》
評論
0/150
提交評論