




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
深圳大學(xué)本科畢業(yè)論文(設(shè)計(jì))誠(chéng)信聲明自己鄭重聲明:所呈交的畢業(yè)論文(設(shè)計(jì)),題目《利用傳輸矩陣法一維磁性管子晶體形成的非互易器件》是自己在指導(dǎo)教師的指導(dǎo)下,獨(dú)立進(jìn)行研究工作所獲取的成就。對(duì)本文的研究做出重要貢獻(xiàn)的個(gè)人和集體,均已在文中以明確方式注明。除此之外,本論文不包括任何其他個(gè)人或集體已經(jīng)公布或撰寫(xiě)過(guò)的作品成就。自己完好意識(shí)到本聲明的法律結(jié)果。畢業(yè)論文(設(shè)計(jì))作者簽字:日期:年代日目錄前言..........................................................................................................................................41光子晶體綜述........................................................................................................................5光子晶體簡(jiǎn)介.............................................................................................................5磁光光子晶體簡(jiǎn)介.....................................................................................................5一維磁光光子晶體簡(jiǎn)介.............................................................................................6一維磁光光子晶體的國(guó)內(nèi)外研究現(xiàn)狀62轉(zhuǎn)移矩陣方法在一維光子晶體解析中的應(yīng)用....................................................................8傳輸特別矩陣介紹.....................................................................................................8光在一維光子晶體的傳輸矩陣...............................................................................11一維光子晶體的光學(xué)傳輸特點(diǎn)研究123一維磁性光子晶系統(tǒng)作光隔斷器的旋轉(zhuǎn)器研究;..........................................................15一維磁光制作晶體傳輸矩陣與理論模擬...............................................................15基于一維光子晶體的光隔斷器設(shè)計(jì)16傳輸入射角對(duì)隔斷器性能的影響17磁光資料因素對(duì)隔斷器性能的影響。194總結(jié)和展望..........................................................................................................................21參照文件.................................................................................................................................222利用傳輸矩陣法解析一維磁性光子晶體形成的非互易器件【大綱】:隨著第四代通信技術(shù)和三網(wǎng)交融的迅速推進(jìn)的廣泛普及,人們都在加速進(jìn)入信息時(shí)代。在新世紀(jì)網(wǎng)絡(luò)通信技術(shù)信息和發(fā)展產(chǎn)生了革命性的影響,并已成為人類生活中不能或缺的一部分。近來(lái)幾年來(lái),隨著基于光子晶體的深入研究,非互易的光子器件的小型化技術(shù)引起了業(yè)界廣泛關(guān)注,這使得含有的光子晶體構(gòu)造特點(diǎn)的磁光晶體擁有特定功能的介質(zhì)構(gòu)造設(shè)計(jì)問(wèn)題成為當(dāng)熱點(diǎn)研究對(duì)象。光學(xué)隔斷器,也被稱為光單向流傳器,是一個(gè)典型的非可逆異性裝置,其工作原理是基于非可逆性,即擁有在正方向上特別低的插入耗費(fèi)時(shí),沿流傳的反方向上的電磁波的流傳時(shí)卻巨大的衰減或反射,是不能逆的。本文采用傳輸矩陣法研究了一維磁光光子晶體目的在于頻譜響應(yīng)好的一維磁光光子晶體,對(duì)可用于光集成的光隔斷器的實(shí)質(zhì)制作意義重要?!局攸c(diǎn)字】:傳輸矩陣;非互易性;光子晶體Abstract】:Withthewidespreadpopularityofthefourthgenerationofcommunicationstechnologyandtherapidadvanceoftripleplay,peopleareacceleratedintotheinformationage.Inthenewcentury,thedevelopmentofanetworkofinformationandcommunicationtechnologytoproducearevolutionaryimpact,andhasbecomeanintegralpartofhumanlife.Mediumstructuraldesignproblemsinrecentyears,withthein-depthstudyofphotoniccrystalsbasedonnon-reciprocalphotonicdevicesminiaturizationtechnologyhasarousedwidespreadconcernintheindustry,whichmakesthestructureofthephotoniccrystalcontainingamagneto-opticalcrystalwithspecificfunctionsbecomewhenhotresearchobject.Theopticalisolator,isalsocalledalight-waycommunicationdevice,atypicalnon-reversiblemeansoppositeitsworkingprincipleisbasedonanon-reversible,i.e.,inthepositivedirectionwithaverylowinsertionloss,thepropagationdirectionoftheanti-Shiquegreatattenuationorpropagationofelectromagneticwavereflected,isirreversible.Studyofone-dimensionalmagneto-photoniccrystalaimgoodspectralresponseofone-dimensionalmagneto-opticalphotoniccrystals,theactualproductionofmeaningcanbeusedforopticalintegratedopticalisolatormajorpaper,thetransfermatrixmethod.Keyword】:transfermatrix;non-reciprocity;photoniccrystals3前言在20世紀(jì)中期,半導(dǎo)體資料及集成電路的發(fā)明炅成功開(kāi)發(fā),引導(dǎo)了第三次科技革命的到來(lái),人類社會(huì)已經(jīng)進(jìn)入了數(shù)字信息時(shí)代。IT技術(shù)的核心是建立資料為基礎(chǔ)的在半導(dǎo)體微電子技術(shù)。這些難以超越的限制給信息技術(shù)的進(jìn)一步發(fā)展提出了顯然挑戰(zhàn)。過(guò)去二十年來(lái),人們對(duì)信息傳輸速率和增加通信容量的需求,極大地刺激了光通信技術(shù)發(fā)展。隨著第四代通信技術(shù)和三網(wǎng)交融的迅速推進(jìn)的廣泛普及,人們都在加速進(jìn)入信息時(shí)代。在新世紀(jì)網(wǎng)絡(luò)通信技術(shù)信息和發(fā)展產(chǎn)生了革命性的影響,并已成為人類生活中不能或缺的一部分。但是,由于電子響應(yīng)時(shí)間和量子效應(yīng)和其他限制,電子集成光電子器件日益成為信息發(fā)送和辦理系統(tǒng)的瓶頸。與電子對(duì)照,好多光子作為信息載體有著天生的優(yōu)勢(shì),如低功耗,發(fā)熱少;光子更大的信息容量裝備;他們之間沒(méi)有交互,所以不會(huì)發(fā)生交織攪亂的流傳;光子傳輸速度比電子介質(zhì)之類的更快[1]。各種光學(xué)資料和器件已發(fā)展特別快。由于光子不像電子同樣易于控制,長(zhǎng)遠(yuǎn)以來(lái),光信息技術(shù)可是在信息傳輸中獲取應(yīng)用,信息辦理的核心依舊依賴微電子技術(shù)。光子晶體的出現(xiàn)可改變了這種情況。近來(lái)幾年來(lái),隨著基于光子晶體的深入研究,非互易的光子器件的小型化技術(shù)引起了業(yè)界廣泛關(guān)注,這使得含有的光子晶體構(gòu)造特點(diǎn)的磁光晶體擁有特定功能的介質(zhì)構(gòu)造設(shè)計(jì)問(wèn)題成為當(dāng)熱點(diǎn)研究對(duì)象。所以,光子晶體的研究正如火如茶。光學(xué)隔斷器,也被稱為光單向流傳器,是一個(gè)典型的非可逆異性裝置,其工作原理是基于非可逆性,即擁有在正方向上特別低的插入耗費(fèi)時(shí),沿流傳的反方向上的電磁波的流傳時(shí)卻巨大的衰減或反射,是不能逆的。在本文中,以非互異性器件隔斷器為詳盡研究對(duì)象,對(duì)一維光子晶體研究擁有實(shí)質(zhì)意義。全光網(wǎng)絡(luò)中的密集波分多路復(fù)用系統(tǒng)要求所用的部件擁有小型化的特點(diǎn),以便于集成,現(xiàn)在廣泛使用的老例光隔斷器顯然是不吻合這一要求,所以,磁-光隔斷器,光子晶體,以實(shí)現(xiàn)在1997顯然,M.Inoue和T.Fujii等光子晶體的過(guò)程中,由磁光介質(zhì)和電介質(zhì)的周期性或準(zhǔn)周期性的一個(gè)整體部署發(fā)現(xiàn)二維光子晶體組成的磁光顯然提高的法拉第效應(yīng)從擁有光的強(qiáng)局部化的周期性排列的光子晶體,此后M.Inoue等T.Fujii的介電常數(shù)的影響的主要中間的磁-光介質(zhì)(BiYIG),即所謂的夾心型構(gòu)造的兩側(cè)此構(gòu)造共同的電介質(zhì)能夠有效地提高法拉第轉(zhuǎn)角,但傳輸是由坂口和杉本研究顯然減少發(fā)現(xiàn)的多磁弊端構(gòu)造二維光子晶體能夠不損害中的法拉第轉(zhuǎn)角的發(fā)送設(shè)置,并依照H.Kato等報(bào)道,當(dāng)在一維光子晶體的磁工作的多層構(gòu)造(2或3)的弊端能夠同時(shí)實(shí)現(xiàn)起來(lái)加以改進(jìn)透射率為100%和45的法拉第轉(zhuǎn)角。及全光網(wǎng)絡(luò)中的密集波分多路復(fù)用系統(tǒng)要求所用的部件擁有小型化的特點(diǎn),以便于集成。而現(xiàn)在被廣泛使用的老例光隔斷器顯然不吻合這種要求。所以,利用光子晶體實(shí)現(xiàn)磁光隔斷器有重視要的打破。在20世紀(jì)90年代,M.Inoue和在研究光子晶體時(shí),發(fā)現(xiàn)由一維磁光光子晶體擁有顯然加強(qiáng)的法拉第效應(yīng),擁有很強(qiáng)的光局域性。隨后M.Inoue和研究了一種中間為磁光介質(zhì)(BiYIG),能有效地增大法拉第旋轉(zhuǎn)角,此后,Sakaguchi和Sugimoto的研究發(fā)現(xiàn)了當(dāng)一維磁光光子晶體工作在多層弊端構(gòu)造(兩層或三層)時(shí),能夠同時(shí)實(shí)現(xiàn)高達(dá)100%的透過(guò)率和45的法拉第旋轉(zhuǎn)角[]。目前,需要研發(fā)人員都在致力于研究新式集成化隔斷器,但這種光隔斷器的研究尚處于研究階段,擁有沒(méi)有足夠的構(gòu)造緊湊,光譜響應(yīng)不夠?qū)挼炔蛔阒?,磁光多層膜的?shí)質(zhì)制備還不能熟。本文采用傳輸矩陣法研究了一維磁光光子晶體目的在研究于頻譜響應(yīng)好的一維磁光光子晶體,對(duì)可用于光集成的光隔斷器的實(shí)質(zhì)制作意義重要。4光子晶體綜述1.1光子晶體簡(jiǎn)介光子晶體的由John和Yabonvitch在20世紀(jì)80年代獨(dú)立地在提出,它是依照傳統(tǒng)的晶體看法比較而得來(lái)的。他們最初的想法是在光的流傳時(shí)改變資料的性質(zhì),就像我們改變了使用半導(dǎo)體資料的性質(zhì)。我們知道,在半導(dǎo)體資料中,由于電子運(yùn)動(dòng)的性質(zhì)的影響,電子的能帶構(gòu)造將形成的晶格構(gòu)造的原子排列的周期性電勢(shì)。依照固體物理學(xué)的經(jīng)典理論,當(dāng)電子碰到原子陣列形成的周期性電勢(shì)場(chǎng)的調(diào)制時(shí),色散曲線變得帶狀,稱為帶。不同樣介電常數(shù)的介質(zhì)資料被部署在此間的空間周期性調(diào)制的電磁介電常數(shù)的一準(zhǔn)時(shí)期內(nèi),其色散曲線也將成帶狀。并由此想到在不同樣介質(zhì)資料的介電常數(shù)的結(jié)構(gòu)進(jìn)行部署,以形成空間周期性變化的光的性質(zhì),由于介電常數(shù)在空間周期性的存在,所以它也擁有的光周期分布,失散曲線光波流傳的,其中帶構(gòu)造將形成該光子能帶,光子能帶之間可能出現(xiàn)帶隙,即光子帶隙也叫光子禁帶。頻率落在光子帶隙的光子,在某些方向是嚴(yán)格禁止流傳。我們把擁有光子帶隙的周期性介電構(gòu)造叫做光子晶體。光子晶體和天然晶體擁有周期性構(gòu)造,象研究天然的晶體的好多看法已被用于研究光子晶體去。依照晶體介質(zhì)的周期,光子晶體能夠分成2維(1—D),2維(2—D)及3維(3—D)光子晶體,如圖1所示[2]:圖1-1光子晶體表示圖近似于傳統(tǒng)的半導(dǎo)體資料,圓滿的光子晶體應(yīng)該被引入的雜質(zhì)和弊端,損壞嚴(yán)格的周期構(gòu)造,能起到奇妙的作用。能夠在光子晶體點(diǎn)弊端,線弊端和表面弊端,這是光子晶體的基礎(chǔ)上,實(shí)現(xiàn)各種功能的引入。光子晶體重要特點(diǎn)表現(xiàn)在光子帶隙的局部化現(xiàn)象。半導(dǎo)體晶格的電子波函數(shù)的調(diào)制是類似,光子晶體能夠調(diào)制擁有相應(yīng)波長(zhǎng)的電磁波。當(dāng)電磁波在光子晶體中流傳時(shí),并在布拉格散射的存在下進(jìn)行調(diào)制。能帶與能帶之間出現(xiàn)帶隙,即光子帶隙。光被禁止出現(xiàn)在光子帶隙中,所以我們能夠自由控制電磁波將有特定頻率的光可在這個(gè)弊端能級(jí)中出現(xiàn)。即沿著必然的路線引入弊端,那么就可以形成一條光的通路,近似于電流在導(dǎo)線中流傳同樣,只有沿著光子導(dǎo)線流傳的光子才能正常的流傳,其他任何試圖以其他路子流傳的光子都將被完好禁止在帶內(nèi)。1.2磁光光子晶體簡(jiǎn)介磁光光子晶體用磁光資料組成的光子晶體,是一種擁有合用的磁光效應(yīng)的資料。磁光效應(yīng)是指經(jīng)過(guò)在磁性狀態(tài)下的物質(zhì)和光之間的相互作用的各種光學(xué)現(xiàn)象。包括法拉第效應(yīng),塞曼效應(yīng)等。磁光光子晶體擁有光子晶體屬性和磁光效應(yīng)兩個(gè)特點(diǎn),光子的這兩個(gè)特點(diǎn)能夠一5起控制的,這樣的磁光光子晶體表現(xiàn)出一些獨(dú)到的性能。比方,利用與外面磁場(chǎng)成比率的大小,設(shè)計(jì)可調(diào)光子晶體。的關(guān)系經(jīng)過(guò)控制外面磁場(chǎng),并改變?cè)摴庾泳w組分的介電常數(shù),從而實(shí)現(xiàn)帶隙控制[3]。目前,大多磁光晶體擁有高對(duì)稱性,合用的磁光晶體更是主要為立方晶體。擁有高強(qiáng)度鐵磁/鐵磁晶體擁有很強(qiáng)的法拉第效應(yīng),適于制作非互易元件以及磁光儲(chǔ)藏器。擁有逆磁和順磁特點(diǎn)的晶體,其磁化強(qiáng)度較低,外面磁場(chǎng)由法拉第旋轉(zhuǎn)而引起的,僅合用于制造磁光調(diào)制器。鐵,鈷,鎳是鐵磁性元素,在單晶磁性金屬化合物比大多數(shù)大得多的金屬很大的法拉第效應(yīng)。但是,磁性金屬的自由電子吸取可見(jiàn)光和紅外線不透明的,所以限制了它的磁光應(yīng)用程序。含某些種類的兼具高法拉第效應(yīng)的鐵素體的磁性元件,擁有低吸取損失,是最合用的磁光晶體資料。其中,最突出的表現(xiàn)特別是稀土石榴石,如釩酸釔晶體。利用光子晶體的局域效應(yīng)加強(qiáng)磁性介質(zhì)的法拉第效應(yīng)或磁致雙折射效應(yīng),可制作制作高性能的光隔斷器。1.3一維磁光光子晶體簡(jiǎn)介一維光子晶體是介質(zhì)僅在一個(gè)方向上的周期性介電構(gòu)造,擁有不同樣的介質(zhì)的資料組成的多層膜磁光資料。一維光子晶體是由兩種或兩種以上的介電常數(shù)由周期性重復(fù)的,所以它具有周期性構(gòu)造僅在一個(gè)方向,而在另兩個(gè)方向都是均勻的。一維光子晶體,平時(shí)經(jīng)過(guò)真空沉積、溶膠、凝膠,從兩個(gè)不同樣的折射率的電介質(zhì)交替排列制備而成。這種構(gòu)造實(shí)質(zhì)上已被研究好多年,而且已經(jīng)被廣泛地應(yīng)用于各種光學(xué)系統(tǒng)中。兩種不同樣介質(zhì)的磁光平時(shí)交替堆疊生長(zhǎng)而成的一維磁光光子晶體,在介電層的上沿平行于介質(zhì)的平面的方向上是空間地址的周期函數(shù),而在平行于介質(zhì)層平面的方向上不隨空間位置變化。最祖先們認(rèn)為,一維磁光光子帶隙光子晶體只能出現(xiàn)在這個(gè)方向。但此后Joannooulos則和他的同事們從理論和實(shí)驗(yàn)點(diǎn)出了一維磁光光子晶體也能夠擁有全方向的立體帶隙構(gòu)造,所以能夠在使用一維磁光光子晶體資料來(lái)代替2維,3維磁光光子晶體資料制備某些設(shè)備。其他,一維磁光光子晶體構(gòu)造中最簡(jiǎn)單,最簡(jiǎn)單準(zhǔn)備,所以一維光子晶體擁有重要的意義和合用價(jià)值[4]。1.4一維磁光光子晶體的國(guó)內(nèi)外研究現(xiàn)狀上世紀(jì)九十年代中后期,研究人員在基于磁光資料和絕緣資料組成的一般一維光子晶體平板的研究中發(fā)現(xiàn),利用光學(xué)原理組成了一維光子晶體構(gòu)造可能有較小的幾何尺寸,而且擁有控制后散射特點(diǎn)。此后M.J.Steel以實(shí)考據(jù)明,在該一維光子晶體構(gòu)造的可旋轉(zhuǎn)的偏振法拉第效應(yīng)的平面能夠減少設(shè)備的尺寸。其他,法拉第效對(duì)付外面偏置磁場(chǎng)的存在方式提出了較高的要求,同時(shí)也限制了使用這樣的一維構(gòu)造。依照研究目的,一維磁光光子晶體能夠分為兩個(gè)技術(shù)路線。一種技術(shù)路線的重點(diǎn)是加強(qiáng)現(xiàn)有的法拉第磁光晶體的收效。其基根源理是在在磁光晶體形成弊端的一維光子晶體諧振腔。在諧振腔的電磁波被大大加強(qiáng),同磁光晶體之間的電磁相互作用能夠大大提高旋光光學(xué)效應(yīng),這樣比較薄的磁光晶體也能夠?qū)崿F(xiàn)更大的旋轉(zhuǎn)角度。還一個(gè)技術(shù)路線的重點(diǎn)是經(jīng)過(guò)電磁特點(diǎn)的實(shí)現(xiàn)的電磁波單向經(jīng)過(guò)特點(diǎn)。其基根源理是:磁光晶體的非互易性使一維磁光光子帶隙的光子晶體諧振峰值亦在電磁波入射的的正向和反向會(huì)出現(xiàn)必然的頻移,進(jìn)而實(shí)現(xiàn)特定頻率的單向經(jīng)過(guò)特點(diǎn)。對(duì)照只下,它在構(gòu)造上與第一種基本近似,可是施加的磁場(chǎng)的方向是不同樣:前者沿光的流傳方向,相當(dāng)于一個(gè)傳統(tǒng)的光隔6離器;后者是垂直于光的流傳方向。這種差別直接影響光晶體的非零離軸量,進(jìn)而獲取光子晶體的完好不同樣的性質(zhì)[5]。近來(lái)幾年來(lái),磁光光子晶體的研究人員越來(lái)越多,磁光光子晶體的研究也越來(lái)越碰到重視。在外加磁場(chǎng)的情況下,這種光子晶體能夠損壞電磁場(chǎng)的時(shí)間反演對(duì)稱性。研究者也提出了多種非互易光子晶體器件和光學(xué)電路,在理論和實(shí)驗(yàn)兩方面都有深入的研究。72轉(zhuǎn)移矩陣方法在一維光子晶體解析中的應(yīng)用.2.1傳輸特別矩陣介紹研究光子晶體的工作基礎(chǔ)是研究光在光子晶體中(周期介質(zhì))的流傳規(guī)律,可從光學(xué)角度來(lái)計(jì)算。麥克斯韋方程確定的光場(chǎng)中的光子晶體的流傳規(guī)律是,在特定的計(jì)算方法能夠在詳盡理論研究中使用。本文是利用光學(xué)傳輸矩陣方法來(lái)計(jì)算,所以本章從光學(xué)角度,依照麥克斯韋方程組推導(dǎo)出光流傳的基本方程的光子晶體轉(zhuǎn)播的微分看作,并進(jìn)一步對(duì)一個(gè)一維的光學(xué)傳輸矩陣?yán)碚撏茖?dǎo)。光是一種電磁波,在光子晶體的光傳輸特點(diǎn)能夠是麥克斯韋方程組的精確描述。EBtDHJ(2.1)tDB0其中,E為電場(chǎng)強(qiáng)度,D為電位移矢量,H為磁場(chǎng)強(qiáng)度,B為磁感覺(jué)強(qiáng)度,為電荷密度,J為電流密度。由于介質(zhì)受磁場(chǎng)作用的極化響應(yīng),滿足以下方程:DEBH()式中和為介質(zhì)的介電常數(shù)和磁導(dǎo)率常數(shù),對(duì)于均勻的各向同性的線性介質(zhì)和能夠?qū)憺椋?r0r()式中,0和0為真空介電常數(shù)和磁導(dǎo)率常數(shù),r和r為介質(zhì)的相對(duì)介電常數(shù)和磁導(dǎo)率常數(shù)。由于在介質(zhì)中沒(méi)有空間電荷和電流,所以:0、J0,將()()式代入()可得:()8E0EBt()B0EB0r0rt考慮一個(gè)平面時(shí)諧電磁波從一分層介質(zhì)內(nèi)流傳。我們知道,任何平面波,無(wú)論如何它的偏振,能夠分解成兩個(gè)TE和TM波,而且在所述介質(zhì)的界面的垂直重量和平行于界線條件部件是相互獨(dú)立的,所以兩者相互獨(dú)立浪潮。其他,若是把麥克斯韋方程中E和H、和在同一時(shí)間相互顛倒,則方程保持不變。所以,就任何定TM波,也能夠經(jīng)過(guò)相應(yīng)結(jié)果ZE波置換而得出[6]。2.1.1TE波下的傳輸矩陣傳輸矩陣法是由Mackinon和Hendry發(fā)展起來(lái)的,而且特別成功地應(yīng)用于LEED實(shí)驗(yàn)和解析出弊端的光子晶體。其實(shí)質(zhì)是在現(xiàn)實(shí)空間網(wǎng)格地址的電場(chǎng)或磁場(chǎng)開(kāi)始麥克斯韋方程組轉(zhuǎn)移到一個(gè)矩陣形式,同樣成為求解特點(diǎn)值問(wèn)題。從一個(gè)介質(zhì)A到介質(zhì)B,以TE波作為一個(gè)例子,考慮斜入射的一般情況下,與僅考慮各向同性介質(zhì)的情況下。當(dāng)介質(zhì)是沒(méi)有傳導(dǎo)電流時(shí),依照電磁界線條件在界面處,電場(chǎng)V和磁場(chǎng)在切割線方向是連續(xù)的,考慮到電磁場(chǎng)的外面存在單調(diào)的各向異性流傳模型。讓沿x軸正方向從左向右ω頻率的電磁波入射在介質(zhì)層和施加的磁場(chǎng)垂直于z軸方向的重量和電磁場(chǎng)分別在磁性元件的流傳方向,沿y軸和z軸方向。這里定義流傳常數(shù)kz=0,ky=q,kx=k。電場(chǎng)強(qiáng)度和磁場(chǎng)強(qiáng)度分別為E(x,y,z)E(x)eiqy,H(x,y,z)H(x)eiqy()考慮一個(gè)單調(diào)的均質(zhì)的電介質(zhì)層的情況下。當(dāng)垂直于所施加的恒定磁場(chǎng)相互,這是平時(shí)被稱為TE模式的方向入射的電磁波的電場(chǎng)矢量的方向。入射的電磁波重量分別電場(chǎng)和磁場(chǎng)重量考分別為E(EX,EY,0),H(HX,HY,0)(2.6)依照式(),略去時(shí)間項(xiàng)eiwt,對(duì)y方向的偏導(dǎo)數(shù),y作用在電場(chǎng)上等價(jià)于乘以iq,麥克斯韋方程的表達(dá)為為EiHHi()E把式(2.7)寫(xiě)成矩陣形式為:x,y,z0Ex,iq,i00zEx,Ey,0Hz9x,y,z,2,0Ex1-iH,iq,-i0i2,,Ey()x0z0,0,00,0,Hz3聯(lián)立兩個(gè)旋度方程式(2.8)求解得能夠?qū)螌痈飨虍愋越橘|(zhì)中的(x)寫(xiě)成傳輸矩陣形式:(xx)M(x,w)(x)()則傳輸矩陣為:cosxMsinkx,iN2M2sinkxM(x,w)NN(i1sinkx,coskx,coskxMsinkxNN2.2.2TM波下的傳輸矩陣平時(shí)的情況下所說(shuō)的TM波就是指當(dāng)電場(chǎng)的電場(chǎng)方向與外加磁場(chǎng)方向相互平行。入射的電磁波重量電場(chǎng)和磁場(chǎng)重量分別為:E(0,0,EZ),H(HX,HY,0),()同樣略去時(shí)間項(xiàng)eiwt,對(duì)y方向的偏導(dǎo)數(shù)y作用在電場(chǎng)上等價(jià)于乘以iq,麥克斯韋方程變?yōu)椋?iqHxHyi03Ez()x由此能夠得出TM模式下,單層各向異性介質(zhì)內(nèi)的傳輸矩陣為:coskx,iusinkxM(x,w)ck(2.13)icksinkx,coskxu能夠看出單調(diào)的各向異性資料傳輸矩陣TM波的情況下同樣一般介質(zhì)傳輸矩陣同樣,這意味著傳輸矩陣在TM下不會(huì)產(chǎn)非互易性。上述推導(dǎo)是同時(shí)進(jìn)行的磁光資料的動(dòng)力學(xué)方程和在所施加的磁場(chǎng)重混淆的資料的各向異性磁光介電常數(shù)張量的存在下獲取的帶電粒子的電磁場(chǎng)的麥克斯韋方程??紤]到在一個(gè)單調(diào)的均勻磁場(chǎng)的流傳條件的電磁波,推導(dǎo)出一個(gè)單調(diào)介質(zhì)福格殊收效TE模式和TM模式下的轉(zhuǎn)移矩陣。所以,一個(gè)單調(diào)關(guān)節(jié)各向同性介質(zhì)中的傳輸矩陣,該傳輸矩陣能夠由磁光光子晶體磁的光資料和一般資料的周期性排列而獲取。傳輸矩陣法是磁場(chǎng)在實(shí)質(zhì)空間中的晶格地址張開(kāi),麥克斯韋方程轉(zhuǎn)變到傳輸矩陣形式,同樣的本征值變?yōu)榻鉀Q問(wèn)題。由于能夠從定義能夠看出,真切的傳輸矩陣法是麥克斯韋方程到傳輸矩陣,你能夠獲取一個(gè)轉(zhuǎn)移矩陣,此后擴(kuò)展到整個(gè)單調(diào)結(jié)論的介質(zhì)空間,它能夠計(jì)算整個(gè)介質(zhì)空間的反射和透射系數(shù)。傳輸矩陣表示某一層(面)格點(diǎn)的場(chǎng)強(qiáng)與近鄰的另一層(面)格點(diǎn)場(chǎng)強(qiáng)的關(guān)系,這樣能夠利用麥克斯韋方程組將場(chǎng)從一個(gè)地址外推到整個(gè)晶體空間。這個(gè)方法10是對(duì)頻率依賴性介電常數(shù)金屬系統(tǒng)特別有效。由于較少的矩陣元素,運(yùn)算速度就會(huì)很快,精度也特別好。在辦理光的局域化和光子帶隙弊端態(tài)等問(wèn)題時(shí),大量的計(jì)算能夠更方便快捷的實(shí)現(xiàn)[7]。2.2光在一維光子晶體的傳輸矩陣光子晶體的數(shù)值計(jì)算在其研究工作中起著特別重要的作用。在這方面,原半導(dǎo)體光子晶體對(duì)照擁有極大的優(yōu)勢(shì):我們由計(jì)算機(jī)來(lái)模擬各種由麥克斯韋方程所描述的光學(xué)現(xiàn)象,并能實(shí)現(xiàn)特別高的精度。所以在光子晶體的研究和開(kāi)發(fā)過(guò)程中,理論研究和計(jì)算機(jī)光子晶體設(shè)計(jì)的數(shù)值計(jì)算中起著特別重要的支撐作用。好多方法已被用來(lái)模擬光子能帶構(gòu)造,透射系數(shù),光子態(tài)密度等特點(diǎn)的模擬計(jì)算。論文是使用一個(gè)光學(xué)傳輸矩陣?yán)碚撚?jì)算,依照麥克斯韋方程導(dǎo)出特點(diǎn)方程光子晶體,推導(dǎo)一維光學(xué)傳輸矩陣?yán)碚?。從兩個(gè)不同樣的相對(duì)介電常數(shù)(a,b)和厚度(A,B層)的電介質(zhì)層交替地排列在形成的一維周期性構(gòu)造的考慮。平行的電介質(zhì)層,電磁波從均勻厚度的x,y平面和電磁波的表面進(jìn)入,從xy平面沿Z軸的方向流傳,分別對(duì)應(yīng)于A,B,空間周期為dab。如圖2-1所示。該模型假定一維光子晶體構(gòu)造在垂直方向上是有限的,在其他兩個(gè)方向是無(wú)量的。圖2-1一維光子晶體平面表示圖在介質(zhì)中的光將被認(rèn)為是正想的電磁波和反向的電磁波疊加,依照電磁界線條件,光的每個(gè)電介質(zhì)層與光波的相互作用已完好確定的相互作用。光能夠分解成兩個(gè)兩個(gè)正交方向的獨(dú)立振動(dòng)肺活量。振動(dòng)方向垂直于TE波的振動(dòng)方向平行于入射面的為TM波,下面將談?wù)撛诠庾泳w中兩種波的傳輸矩陣[8]。傳輸矩陣法研究電磁波在分層介質(zhì)系統(tǒng)中傳輸?shù)慕?jīng)典方法。在傳輸矩陣法是作為“基本單位”分層推斷單個(gè)介質(zhì)對(duì)應(yīng)的特點(diǎn)矩陣介質(zhì)系統(tǒng)的單調(diào)介質(zhì),層狀介質(zhì)的整個(gè)系統(tǒng)的傳輸矩陣相乘已獲取的各單調(diào)介質(zhì)轉(zhuǎn)移矩陣。但是單層介質(zhì)其實(shí)不是分層介質(zhì)系統(tǒng)的“基本單元”,所以,“基本單元”的界面和一些介質(zhì)是分層介質(zhì)系統(tǒng)。由于傳輸矩陣法對(duì)單層電介質(zhì)作為系統(tǒng)的基本單位,所以小于基本單元的單個(gè)界面或是一段介質(zhì)上電磁波的傳輸問(wèn)題利用傳輸矩陣法就不能夠獲取解決。在介質(zhì)的界面如圖2-1所示,在電磁場(chǎng)計(jì)算模型滿足界線條件。在介電層和光之間的每個(gè)交互可經(jīng)過(guò)其特點(diǎn)矩陣被完好確定。介質(zhì)層兩邊的場(chǎng)矢量EN、HN,和EN1、HN1,的模能夠用傳輸矩陣的特點(diǎn)方程聯(lián)系起來(lái):ENEN1HNMNHN1(2.14)11對(duì)于由多層不同樣介質(zhì)周期排列組成的一維光子晶體,可逐層應(yīng)用(2.14)式的單介質(zhì)層傳輸方程。對(duì)第N層介質(zhì),設(shè)其左界面的場(chǎng)矢量為EN、HN,右界面的場(chǎng)矢量為EN1、HN1,則有ENEN1(2.15)HNMNHN1式中,MN是第N+1層介質(zhì)的傳輸矩陣。同樣,對(duì)第N-1層矩陣,應(yīng)用(2.15)式可得:EN1ENHN1MN1HN(2.16)由上式可得:EN1MN1MNENHN1(2.17)HN依次類推,可得光經(jīng)過(guò)所有層此后的傳輸方程:E1M1M2MN1MNENm11m12ENH1HNm21m22(2.18)HN由上式可進(jìn)一步寫(xiě)出整個(gè)構(gòu)造的透射系數(shù)和反射系數(shù):rm11m12p1p0m21m22p1(2.19)m11m12p1p0m21m22p1t2p0(2.20)m11m12p1p0m21m22p1式中,pcos,p0表示該構(gòu)造左側(cè)接觸的外界環(huán)境的系數(shù),p1為該構(gòu)造右側(cè)接觸的外界環(huán)境的系數(shù)。則反射率和透射率為:R2r(2.4.7)T=1-R(2.4.8)近似的,對(duì)于TM波,我們只要做一個(gè)簡(jiǎn)單的代換就可以的到其反射率和透射率,這里不在做說(shuō)明。2.3一維光子晶體的光學(xué)傳輸特點(diǎn)研究光子晶體周期數(shù),一維光子晶體是由折射率分別為n1和n2,厚度分別為d1和d2的兩種資料交替組成的一維周期性交替的多層構(gòu)造,這些介質(zhì)層循環(huán)的次數(shù)即為光子晶體的周期12數(shù)。周期dd1d2,T表示周期數(shù)。光程,即光在媒質(zhì)中經(jīng)過(guò)的行程和該媒質(zhì)折射率的乘積。比方,該介質(zhì)的折射率為n時(shí),光的前進(jìn)行程d,光程即為乘積nd,從n的物理意義上看,經(jīng)過(guò)在某介質(zhì)中的所經(jīng)歷距離d所需時(shí)間的,而且光經(jīng)過(guò)在相等的真空傳達(dá)到所需的時(shí)間。這是由于介質(zhì)的折射率等于光在真空中和在介質(zhì)中的速度比光的速度,所以,光路是在同一時(shí)間經(jīng)過(guò)光在真空中的行程。光子晶體中光程的比值定義為高低折射率所對(duì)應(yīng)的光程的比值,描述了光經(jīng)過(guò)高低折射率所需的不同樣時(shí)間[9]。中心波長(zhǎng),也就是說(shuō),對(duì)應(yīng)于一其中間點(diǎn),以反響的帶隙的相對(duì)地址,光子帶隙的波長(zhǎng)。在作出膜厚設(shè)計(jì)時(shí),需要依照中心波長(zhǎng)計(jì)算的光子晶體層,其公式為:d04()如能夠在圖2-2(a)、(c)所示,隨著周期的增加,帶隙中的反射率越來(lái)越高,禁帶寬度隨介質(zhì)層的光學(xué)厚度的增大基本上呈線性增加,這表示該膜的厚度的帶隙會(huì)碰到影響??梢?jiàn),一維光子晶體經(jīng)過(guò)改變各介質(zhì)的厚度,光子帶隙能夠在擁有不同樣寬度的不同樣的頻帶獲取的。如能夠看到的,改變的周期數(shù),而不改變帶隙的基當(dāng)?shù)刂罚捎谥芷诘臄?shù)量增加時(shí),該光學(xué)介質(zhì)和相互合作加強(qiáng)災(zāi)害,增加的反射率的帶隙。你能夠想象,當(dāng)周期足夠長(zhǎng),反射率將湊近于100%。周期數(shù)的增加也以致了帶隙邊緣陡峭的帶隙特點(diǎn)更加顯然。13圖2-2周期數(shù)N=8、12、16、20歲月子晶體的帶隙構(gòu)造圖2-2(b)(d)中,頻率為0.4GHZ,0.6GHZ時(shí),透射率幾乎為零,湊近于零的頻率地域?qū)?yīng)著光子禁帶。從圖中我們能夠看到,基本的周期性構(gòu)造并沒(méi)有單調(diào)的光子帶隙構(gòu)造,隨著頻率的增加,傳輸系數(shù)在1和0.5之間的透光振蕩。陪同著周期的數(shù)量N的增加,光子帶隙構(gòu)造逐漸形成,表示光子帶隙構(gòu)造的形成是由引起的周期性折射率變化的。數(shù)量N不斷增加,禁帶透射率越來(lái)越湊近零,而帶隙邊緣越來(lái)越抖,而且禁帶的地址相對(duì)固定,幾乎沒(méi)有隨周期變化[10]。本章學(xué)習(xí)了不同樣因素的一維光子帶隙的變化,經(jīng)過(guò)使用光學(xué)傳輸矩陣法研究發(fā)現(xiàn)一維光子晶體帶角度的特點(diǎn)。由TE、TM波的透射光譜進(jìn)行比較,入射角增大角度后TE、TM波的帶隙邊緣搬動(dòng)更顯著,而TE模式的帶隙變寬,TM模式帶隙變窄。隨著入射角度的增大會(huì)出現(xiàn)新的禁帶,TE模,TM模式是近似的新的帶隙,利用隨著入射角度會(huì)出現(xiàn)新的帶隙的特點(diǎn)能夠?qū)崿F(xiàn)特其他角度濾波。14一維磁性光子晶系統(tǒng)作光隔斷器的旋轉(zhuǎn)器研究;3.1一維磁光制作晶體傳輸矩陣與理論模擬近來(lái)幾年來(lái),所謂的磁光負(fù)折射資料,也被稱為左手性資料的新式資料在理論和實(shí)驗(yàn)中已引起了廣泛關(guān)注。擁有負(fù)的介電常數(shù)和負(fù)磁導(dǎo)率這種資料,進(jìn)而擁有負(fù)折射率。負(fù)折射率資料擁有一些特其他光學(xué)和電磁特點(diǎn),由于電磁波流傳和該資料的折射率在負(fù)折射率資料的正相位相反的流傳,負(fù)折射率資料一起可組成一種新式的光子晶體平時(shí)擁有的帶隙不同樣的布拉格帶隙特點(diǎn)。本節(jié)利用傳輸矩陣方法,研究了能帶構(gòu)造與負(fù)折射率資料的一維光子晶體。以及這兩種資料的折射率為正當(dāng)時(shí)的能帶構(gòu)造進(jìn)行了比較[11]。一維光子晶體表示圖如圖3-1所示,該光子晶體是由a、b兩種不同樣的資料沿z軸方向交替生長(zhǎng)的多層膜系統(tǒng),相應(yīng)的實(shí)質(zhì)厚度分別為dA和dB,晶格周期為ddAdB,圖3-1由正負(fù)資料交替組成的一維光子晶體表示圖用傳輸矩陣能夠表示電磁波在分層介質(zhì)中的流傳,在任意層內(nèi)的光場(chǎng)能夠用以下矩陣表示coskudj,ujsinkjzdjMjjjsin22()jjsinsinkjzdj,coskudjuj其中k2jzjsin2,對(duì)于負(fù)折射率資料則取“-”對(duì)于正折射率資料取“+”。利用電磁場(chǎng)的切向重量在界面上連續(xù)的條件,它的序列與多層膜系統(tǒng)的構(gòu)造一致。我們?nèi)、B兩種資料的折射率分別為nA1.5,nB3.0。為方便計(jì)算取兩介質(zhì)層的光學(xué)厚度同樣,圖3-2給出了在正入射情況下,該構(gòu)造的透射率的變化關(guān)系曲線。15圖3-2(a)傳一致維光子晶體的透射譜(b)含負(fù)折射率資料一維光子晶體的透射譜如圖3-2所示,與傳統(tǒng)的光子晶體參數(shù)的透射光譜的同樣的絕對(duì)值進(jìn)行比較,它們擁有完好不同樣的透射譜。對(duì)于傳統(tǒng)的光子晶體,會(huì)出現(xiàn)兩個(gè)反射之間的細(xì)微通帶峰值;而其透射率迅速單調(diào)減少形成狹窄的透射帶,反射帶也較寬。也就是說(shuō),當(dāng)光經(jīng)過(guò)光子晶體經(jīng)過(guò)交替的正和負(fù)的資料中,只有波長(zhǎng)0/2n(n=0,l,2,?)才能經(jīng)過(guò)光子晶體。利用這個(gè)特點(diǎn)能夠制作性能優(yōu)異的相位變換器件。這經(jīng)過(guò)在光子晶體交替的正和負(fù)的資料能夠改變周期來(lái)改變它的發(fā)送帶寬的數(shù)量。光隔斷器能夠以這種方式很簡(jiǎn)單地實(shí)現(xiàn)。對(duì)含負(fù)折射率資料的光子晶體中,當(dāng)光波以中心波長(zhǎng)入射時(shí),在TE模式是一個(gè)全方向。誠(chéng)然反射譜在TM模式下會(huì)在80度周邊有下降趨勢(shì)但是最低點(diǎn),但反射率依舊在95%以上。在70度周邊減小到零,那么該角逐漸增大到反光帶。經(jīng)過(guò)比較能夠看出:含負(fù)折射率資料比傳統(tǒng)的光子晶體光子晶體有更好的視角特點(diǎn),引入了一維周期性弊端構(gòu)造的光子晶體,會(huì)產(chǎn)生一個(gè)光子帶隙頻率極窄的弊端模。所以,在與光子的弊端模頻率線能夠有效地流傳,類似法布里帕羅腔,一旦走開(kāi)了弊端地址的光子會(huì)迅速衰減。你能夠用它來(lái)設(shè)計(jì)一個(gè)窄帶光隔離器。正向傳輸光的頻率落在弊端模中,而反向傳輸?shù)墓獠ㄏ鄳?yīng)地會(huì)落在弊端模外,迅速地衰減。3.2基于一維光子晶體的光隔斷器設(shè)計(jì)集處于發(fā)展中的集成光學(xué)以及全光網(wǎng)絡(luò)中的密集波分多路復(fù)用系統(tǒng)要求所用的部件具有效型化的特點(diǎn),而目前廣泛使用的大多數(shù)光隔斷器顯然不吻合這一要求,所以使用磁光隔斷器光子晶體實(shí)現(xiàn)的意義。隔斷器能夠防范光路的由于信號(hào)源和由系統(tǒng)產(chǎn)生的反射光路的各種原因引起的不良影響,擁有特別重要的作用。上述傳統(tǒng)的隔斷器一般組成旋磁資料,施加的磁場(chǎng)下的旋磁資料制作的法拉第旋轉(zhuǎn)效應(yīng),而且現(xiàn)已有磁性資料的一般磁自旋的另一種一維光子晶體中,組成一個(gè)新的光子晶體作為磁光資料被嵌入在所述多層的光子晶體的磁性光子晶體中,特別高的光傳輸效率的唯一的可用性,而且還以獲取一種磁性光學(xué)資料的一個(gè)特別大的法拉第轉(zhuǎn)角的組成型磁光隔斷器和形成在磁光資料的多層介質(zhì)膜,能夠獲取比同樣尺寸的恒定磁場(chǎng)的情況下的純法拉第旋轉(zhuǎn)角要大得多。即由上述實(shí)驗(yàn)結(jié)果可知,在一維光子晶體的旋磁法拉第效應(yīng)的磁介質(zhì)并已大大提高,只要深入研究,那么就能構(gòu)造出用于集成光路中的低耗光隔斷器、光環(huán)行器等磁光器件.一維光子晶體構(gòu)造的典型的磁特點(diǎn)是一個(gè)單調(diào)的構(gòu)造弊端(N2/N1)N/M/(N1/N2)n,其中n是循環(huán)的數(shù)量,M是一個(gè)磁光介質(zhì),N1和N2是一維的單弊端磁性光子晶體構(gòu)造的兩種不同樣的電介質(zhì)的光學(xué)特點(diǎn)不能夠滿足光隔斷器的要求的折射率,并經(jīng)過(guò)必然的一維磁性光子晶體構(gòu)造弊端和更對(duì)稱的構(gòu)造,和其光學(xué)特點(diǎn)能滿足光學(xué)隔斷是必需的[12]。16圖3-3磁光資料弊端構(gòu)造表示圖這里提出一種新的一維磁光光子晶體這種構(gòu)造更緊湊,更易于制造。提出用一種非對(duì)稱性磁光法布里帕羅腔構(gòu)造能夠獲取更強(qiáng)的非互易性,被兩個(gè)不同樣的非磁化的布拉格反射鏡夾在中間,整個(gè)構(gòu)造x軸方向是非對(duì)稱性的。所以,擁有足夠法布里帕羅質(zhì)量因數(shù)腔,將以致微腔的總相移擁有特別大的值的積累。經(jīng)過(guò)使用介電資料的不同樣側(cè),以實(shí)現(xiàn)同等的不對(duì)稱磁光資料,即磁光資料兩側(cè)的反射鏡不對(duì)稱。采用YIG和三氧化二鋁介質(zhì)柱作為資料,組成一個(gè)支持電磁波單向經(jīng)過(guò)的磁光光子晶體波導(dǎo)隔斷器。詳盡的設(shè)計(jì)構(gòu)造如圖3-4所示,釩酸釔和三氧化二鋁介質(zhì)柱的半徑均為0.2a,基底為空氣,波導(dǎo)沿x方向。能量從波源發(fā)出后,在第岔口處由于單向經(jīng)過(guò)波導(dǎo)的存在不得不單向其中一個(gè)方向轉(zhuǎn)向,這樣,經(jīng)過(guò)IN端口輸入的光波就發(fā)生了轉(zhuǎn)向,不能夠從OUT端口輸出,如圖3-41所示,構(gòu)造擁有旋轉(zhuǎn)對(duì)稱性,實(shí)現(xiàn)了光路隔斷的目的。圖3-4光隔斷器的磁光波導(dǎo)表示圖3.3傳輸入射角對(duì)隔斷器性能的影響對(duì)于TM波和TE波,其傳輸特點(diǎn)如圖2-3所示。17圖3-5帶隙寬度隨入射角的變化如能夠從圖3-5中能夠看出,當(dāng)入射角為0時(shí),TE和TM模式的傳輸特點(diǎn)是完好一致的。但是,隨著入射角增大角度,禁帶的TE模和TM模的中心的地址被搬動(dòng)到更高的頻率,并禁帶邊緣TE模式搬動(dòng)更顯然,而TE模式的帶隙變寬,TM模式帶隙變窄。與入射角增大角度出現(xiàn)新的帶隙,TE模式,近似于新的帶隙,但是不擁有同樣的寬度和深度,入射角將要使用的新功能TM模地址能夠與特定角度的縫隙實(shí)現(xiàn)過(guò)濾。隨著光輝入射角的增大的結(jié)論,磁光的非互易效應(yīng)也越顯然。本章研究的一維磁光弊端構(gòu)造也隨入射角度的變化而變化。如圖3-5所示,分別在入射角為20度,40度,周期數(shù)為15層的正向光波和反向光波的透射率譜。當(dāng)入射角為20度,在非互易效應(yīng)的光入射角為弱,正向光和反向光透射峰只有一個(gè)小的非互易相移,這兩個(gè)峰的透射率的0.6或更小,而且在兩個(gè)傳輸很窄的峰值帶寬,插入耗費(fèi)和隔斷是不是太大達(dá)不到標(biāo)準(zhǔn)。當(dāng)入射角度到40度,可清楚的倒數(shù)相移之間的反向光的前進(jìn)光與非透射率曲線看出增加,而且正向光和反向光透射率和透射率峰的峰值帶寬的增加,隨著入射角度的進(jìn)一步增大,看出誠(chéng)然非互易相移的更大了而且透射峰的半寬度也增加了,兩個(gè)透射峰會(huì)進(jìn)一步重合。18圖3-5不同樣入射是正反向透射光譜為了進(jìn)一步說(shuō)明入射角改變對(duì)一維磁光晶體特點(diǎn)的影響,本節(jié)研究了含有多層磁介質(zhì)材料的一維磁光晶體在中心波長(zhǎng)720nm處產(chǎn)生的透射譜和法拉第旋轉(zhuǎn)角在不同樣入射角時(shí)的特性。當(dāng)a=b=6時(shí),計(jì)算依次是20°,40°,60°時(shí)的透射譜和法拉第旋轉(zhuǎn)角,帶隙中產(chǎn)生的透射峰值和對(duì)應(yīng)的法拉第旋轉(zhuǎn)角沒(méi)有變化,可是產(chǎn)生的波長(zhǎng)地址向短波方向搬動(dòng)了。入射角是20°時(shí),產(chǎn)生的透射峰值是在波長(zhǎng)為722nm的地址處;入射角是40°時(shí),產(chǎn)生的透射峰值是在波長(zhǎng)為720nm的地址處;入射角是60°,產(chǎn)生的透射峰值是在波長(zhǎng)為712nm的地址處。3.4磁光資料因素對(duì)隔斷器性能的影響。考慮磁光佛克脫效應(yīng),即光流傳方向垂直于外加磁場(chǎng)時(shí),光在透過(guò)磁光資料時(shí),不考慮任何介質(zhì)的耗費(fèi)體系下,磁光資料的光學(xué)性質(zhì)由介電常數(shù)張量描述:,,,i,11220120',,i2,1,0()112200,0,330,0,3僅有5個(gè)不為零的項(xiàng),其中的1,2,3i1是虛數(shù)單位,也就是說(shuō)兩個(gè)非對(duì)角元都是純虛數(shù),而且符號(hào)相反。非對(duì)角元是由于施加外加恒定磁場(chǎng)才產(chǎn)生的,而且非對(duì)角元的大小同磁化強(qiáng)度和磁性資料有很大的關(guān)系。若是增大磁化強(qiáng)度也許改用磁光效應(yīng)更顯然的資料,有助于加強(qiáng)磁光效應(yīng)。如圖3-6所示,分別是非對(duì)角元磁光參數(shù)為,0.06和時(shí),正向光波和反向光波的透射率譜。從圖中能夠看出,隨著磁光參數(shù)從0.03增加到磁光效應(yīng)越來(lái)越顯然,正向光波和反向光波的非互易相移也越來(lái)越大。19圖3-6不同樣磁光參數(shù)時(shí)正向與反向的透射光譜非對(duì)角元的大小同磁化強(qiáng)度和磁性資料有很大的關(guān)系。若是增加磁化或使用磁光效應(yīng)更為顯然的資料,有助于加強(qiáng)磁光效應(yīng),我們研究了在弊端構(gòu)造的磁光參數(shù)的影響。如圖3-6所示,分別,非對(duì)角線上的磁—光參數(shù)為和元件,以60度的入射角向前的透射率和兩側(cè)的厚度反向光波譜。如從圖中能夠看出,隨著磁光資料的非對(duì)角元從增加到,磁光效應(yīng)將
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校老師車輛管理制度
- 全面抓住安全管理制度
- 公司室外衛(wèi)生管理制度
- 宿舍食堂澡堂管理制度
- 山東基本藥物管理制度
- 卸料平臺(tái)衛(wèi)生管理制度
- 醫(yī)藥公司樣品管理制度
- 醫(yī)院疾病通知管理制度
- 廈門公司稅務(wù)管理制度
- 醫(yī)療環(huán)境安全管理制度
- 公路防汛安全培訓(xùn)課件
- 2024年廣東省中考生物+地理試卷(含答案)
- DL-T5796-2019水電工程邊坡安全監(jiān)測(cè)技術(shù)規(guī)范
- 江蘇蘇州昆山2022-2023學(xué)年小升初考試數(shù)學(xué)試卷含答案
- 上海地理會(huì)考復(fù)習(xí)
- 小學(xué)語(yǔ)文閱讀教學(xué)有效性的研究課題方案
- 北京萬(wàn)集DCS30KⅡ計(jì)重收費(fèi)系統(tǒng)技術(shù)方案
- T_CHES 18-2018 農(nóng)村飲水安全評(píng)價(jià)準(zhǔn)則
- 全自動(dòng)立式制袋包裝機(jī)
- 設(shè)施設(shè)備檢查記錄表
- 外資星級(jí)酒店客房清潔衛(wèi)生細(xì)節(jié)量化檢查表
評(píng)論
0/150
提交評(píng)論