


版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省贛州于都思源實(shí)驗(yàn)校2023年十校聯(lián)考最后數(shù)學(xué)測試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知一組數(shù)據(jù),,,,的平均數(shù)是2,方差是,那么另一組數(shù)據(jù),,,,,的平均數(shù)和方差分別是.A. B. C. D.2.如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點(diǎn),交直角邊AC于點(diǎn)E;B、E是半圓弧的三等分點(diǎn),的長為,則圖中陰影部分的面積為()A. B. C. D.3.如圖,已知兩個全等的直角三角形紙片的直角邊分別為、,將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有()A.3個; B.4個; C.5個; D.6個.4.定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱之為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是“下滑數(shù)”的概率為()A. B. C. D.5.如圖,在同一平面直角坐標(biāo)系中,一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點(diǎn),則不等式y(tǒng)1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<26.如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結(jié)論不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC7.下列計算正確的是()A.a(chǎn)2+a2=2a4 B.(﹣a2b)3=﹣a6b3 C.a(chǎn)2?a3=a6 D.a(chǎn)8÷a2=a48.已知x=2﹣3,則代數(shù)式(7+43)x2+(2+3)x+3的值是()A.0 B.3 C.2+3 D.2﹣39.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐10.?dāng)?shù)軸上有A,B,C,D四個點(diǎn),其中絕對值大于2的點(diǎn)是()A.點(diǎn)A B.點(diǎn)B C.點(diǎn)C D.點(diǎn)D11.已知a+b=4,c﹣d=﹣3,則(b+c)﹣(d﹣a)的值為()A.7 B.﹣7 C.1 D.﹣112.如圖,在△ABC中,AB=AC=5,BC=6,點(diǎn)M為BC的中點(diǎn),MN⊥AC于點(diǎn)N,則MN等于()A.?
B.?
C.?
D.?二、填空題:(本大題共6個小題,每小題4分,共24分.)13.把拋物線y=2x2向右平移3個單位,再向下平移2個單位,得到的新的拋物線的表達(dá)式是_____.14.已知b是a,c的比例中項(xiàng),若a=4,c=16,則b=________.15.在平面直角坐標(biāo)系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點(diǎn),則CP+AP的最小值為_____.16.如圖,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,點(diǎn)F在邊AC上,并且CF=2,點(diǎn)E為邊BC上的動點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是_________.17.如圖,A、D是⊙O上的兩個點(diǎn),BC是直徑,若∠D=40°,則∠OAC=____度.18.不等式2x-5<7-(x-5)的解集是______________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)C作x軸的平行線與拋物線上的另一個交點(diǎn)為D,連接AC、BC.點(diǎn)P是該拋物線上一動點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m(m>4).(1)求該拋物線的表達(dá)式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點(diǎn)A、P的直線與y軸于點(diǎn)N,過點(diǎn)P作PM⊥CD,垂足為M,直線MN與x軸交于點(diǎn)Q,試判斷四邊形ADMQ的形狀,并說明理由.20.(6分)由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時間x(天)的關(guān)系如圖中線段l1所示,針對這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時間(天)的關(guān)系如圖中線段l2所示(不考慮其他因素).(1)求原有蓄水量y1(萬m3)與時間(天)的函數(shù)關(guān)系式,并求當(dāng)x=20時的水庫總蓄水量.(2)求當(dāng)0≤x≤60時,水庫的總蓄水量y萬(萬m3)與時間x(天)的函數(shù)關(guān)系式(注明x的范圍),若總蓄水量不多于900萬m3為嚴(yán)重干旱,直接寫出發(fā)生嚴(yán)重干旱時x的范圍.21.(6分)如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點(diǎn)O,交BC于點(diǎn)E,AD∥BC,連接CD.(1)求證:AO=EO;(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結(jié)論.22.(8分)已知點(diǎn)O是正方形ABCD對角線BD的中點(diǎn).(1)如圖1,若點(diǎn)E是OD的中點(diǎn),點(diǎn)F是AB上一點(diǎn),且使得∠CEF=90°,過點(diǎn)E作ME∥AD,交AB于點(diǎn)M,交CD于點(diǎn)N.①∠AEM=∠FEM;②點(diǎn)F是AB的中點(diǎn);(2)如圖2,若點(diǎn)E是OD上一點(diǎn),點(diǎn)F是AB上一點(diǎn),且使,請判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動點(diǎn)(不與O,D重合),連接CE,過E點(diǎn)作EF⊥CE,交AB于點(diǎn)F,當(dāng)時,請猜想的值(請直接寫出結(jié)論).23.(8分)主題班會上,王老師出示了如圖所示的一幅漫畫,經(jīng)過同學(xué)們的一番熱議,達(dá)成以下四個觀點(diǎn):A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理競爭,合作雙贏.要求每人選取其中一個觀點(diǎn)寫出自己的感悟.根據(jù)同學(xué)們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據(jù)圖表中提供的信息,解答下列問題:觀點(diǎn)頻數(shù)頻率Aa0.2B120.24C8bD200.4(1)參加本次討論的學(xué)生共有人;表中a=,b=;(2)在扇形統(tǒng)計圖中,求D所在扇形的圓心角的度數(shù);(3)現(xiàn)準(zhǔn)備從A,B,C,D四個觀點(diǎn)中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點(diǎn)D(合理競爭,合作雙贏)的概率.24.(10分)為評估九年級學(xué)生的體育成績情況,某校九年級500名學(xué)生全部參加了“中考體育模擬考試”,隨機(jī)抽取了部分學(xué)生的測試成績作為樣本,并繪制出如下兩幅不完整的統(tǒng)計表和頻數(shù)分布直方圖:成績x分人數(shù)頻率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名學(xué)生的成績;(2)通過計算將頻數(shù)分布直方圖補(bǔ)充完整;(3)若測試成績不低于40分為優(yōu)秀,請估計本次測試九年級學(xué)生中成績優(yōu)秀的人數(shù).25.(10分)如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點(diǎn)O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°(1)如圖2,當(dāng)△ABO是等邊三角形時,求證:OE=AB;(2)如圖3,當(dāng)△ABO是直角三角形時,且∠AOB=90°,求證:OE=AB;(3)如圖4,當(dāng)△ABO是任意三角形時,設(shè)∠OAD=α,∠OBC=β,①試探究α、β之間存在的數(shù)量關(guān)系?②結(jié)論“OE=AB”還成立嗎?若成立,請你證明;若不成立,請說明理由.26.(12分)在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax+c(其中a、c為常數(shù),且a<0)與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)B,此拋物線頂點(diǎn)C到x軸的距離為1.(1)求拋物線的表達(dá)式;(2)求∠CAB的正切值;(3)如果點(diǎn)P是x軸上的一點(diǎn),且∠ABP=∠CAO,直接寫出點(diǎn)P的坐標(biāo).27.(12分)如圖,拋物線y=x2﹣2mx(m>0)與x軸的另一個交點(diǎn)為A,過P(1,﹣m)作PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B,點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)為C(1)若m=2,求點(diǎn)A和點(diǎn)C的坐標(biāo);(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;(3)在坐標(biāo)軸上是否存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.
2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【答案解析】
根據(jù)數(shù)據(jù)的變化和其平均數(shù)及方差的變化規(guī)律求得新數(shù)據(jù)的平均數(shù)及方差即可.【題目詳解】解:∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)是3×2-2=4;∵數(shù)據(jù)x1,x2,x3,x4,x5的方差為,∴數(shù)據(jù)3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【答案點(diǎn)睛】本題考查了方差的知識,說明了當(dāng)數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平均數(shù)也加或減這個數(shù),方差不變,即數(shù)據(jù)的波動情況不變;當(dāng)數(shù)據(jù)都乘以一個數(shù)(或除以一個數(shù))時,平均數(shù)也乘以或除以這個數(shù),方差變?yōu)檫@個數(shù)的平方倍.2、D【答案解析】
連接BD,BE,BO,EO,先根據(jù)B、E是半圓弧的三等分點(diǎn)求出圓心角∠BOD的度數(shù),再利用弧長公式求出半圓的半徑R,再利用圓周角定理求出各邊長,通過轉(zhuǎn)化將陰影部分的面積轉(zhuǎn)化為S△ABC﹣S扇形BOE,然后分別求出面積相減即可得出答案.【題目詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點(diǎn),∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的長為,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=故選:D.【答案點(diǎn)睛】本題主要考查弧長公式,扇形面積公式,圓周角定理等,掌握圓的相關(guān)性質(zhì)是解題的關(guān)鍵.3、B【答案解析】分析:直接利用軸對稱圖形的性質(zhì)進(jìn)而分析得出答案.詳解:如圖所示:將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有4個.故選B.點(diǎn)睛:本題主要考查了全等三角形的性質(zhì)和軸對稱圖形,正確把握軸對稱圖形的性質(zhì)是解題的關(guān)鍵.4、A【答案解析】分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部情況的總數(shù):根據(jù)題意得知這樣的兩位數(shù)共有90個;
②符合條件的情況數(shù)目:從總數(shù)中找出符合條件的數(shù)共有45個;二者的比值就是其發(fā)生的概率.詳解:兩位數(shù)共有90個,下滑數(shù)有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45個,
概率為.
故選A.點(diǎn)睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.5、C【答案解析】【分析】一次函數(shù)y1=kx+b落在與反比例函數(shù)y2=圖象上方的部分對應(yīng)的自變量的取值范圍即為所求.【題目詳解】∵一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點(diǎn),∴不等式y(tǒng)1>y2的解集是﹣3<x<0或x>2,故選C.【答案點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,利用數(shù)形結(jié)合是解題的關(guān)鍵.6、C【答案解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴選項(xiàng)ABD都一定成立.故選C.7、B【答案解析】
解:A.a(chǎn)2+a2=2a2,故A錯誤;C、a2a3=a5,故C錯誤;D、a8÷a2=a6,故D錯誤;本題選B.考點(diǎn):合同類型、同底數(shù)冪的乘法、同底數(shù)冪的除法、積的乘方8、C【答案解析】
把x的值代入代數(shù)式,運(yùn)用完全平方公式和平方差公式計算即可【題目詳解】解:當(dāng)x=2﹣3時,(7+43)x2+(2+3)x+3=(7+43)(2﹣3)2+(2+3)(2﹣3)+3=(7+43)(7-43)+1+3=49-48+1+3=2+3故選:C.【答案點(diǎn)睛】此題考查二次根式的化簡求值,關(guān)鍵是代入后利用完全平方公式和平方差公式進(jìn)行計算.9、D【答案解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【題目詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂?shù)膱A心,符合題意的只有圓錐.故選D.【答案點(diǎn)睛】本題考查由三視圖確定幾何體的形狀,主要考查學(xué)生空間想象能力以及對立體圖形的認(rèn)識.10、A【答案解析】
根據(jù)絕對值的含義和求法,判斷出絕對值等于2的數(shù)是﹣2和2,據(jù)此判斷出絕對值等于2的點(diǎn)是哪個點(diǎn)即可.【題目詳解】解:∵絕對值等于2的數(shù)是﹣2和2,∴絕對值等于2的點(diǎn)是點(diǎn)A.故選A.【答案點(diǎn)睛】此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關(guān)鍵要明確:①互為相反數(shù)的兩個數(shù)絕對值相等;②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負(fù)數(shù)的數(shù).③有理數(shù)的絕對值都是非負(fù)數(shù).11、C【答案解析】測試卷分析:原式去括號可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故選A.考點(diǎn):代數(shù)式的求值;整體思想.12、A【答案解析】
連接AM,根據(jù)等腰三角形三線合一的性質(zhì)得到AM⊥BC,根據(jù)勾股定理求得AM的長,再根據(jù)在直角三角形的面積公式即可求得MN的長.【題目詳解】解:連接AM,
∵AB=AC,點(diǎn)M為BC中點(diǎn),
∴AM⊥CM(三線合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,∴根據(jù)勾股定理得:AM===4,
又S△AMC=MN?AC=AM?MC,∴MN==.
故選A.【答案點(diǎn)睛】綜合運(yùn)用等腰三角形的三線合一,勾股定理.特別注意結(jié)論:直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y=1(x﹣3)1﹣1.【答案解析】
拋物線的平移,實(shí)際上就是頂點(diǎn)的平移,先求出原拋物線的頂點(diǎn)坐標(biāo),再根據(jù)平移規(guī)律,推出新拋物線的頂點(diǎn)坐標(biāo),根據(jù)頂點(diǎn)式可求新拋物線的解析式.【題目詳解】∵y=1x1的頂點(diǎn)坐標(biāo)為(0,0),∴把拋物線右平移3個單位,再向下平移1個單位,得新拋物線頂點(diǎn)坐標(biāo)為(3,﹣1),∵平移不改變拋物線的二次項(xiàng)系數(shù),∴平移后的拋物線的解析式是y=1(x﹣3)1﹣1.故答案為y=1(x﹣3)1﹣1.【答案點(diǎn)睛】本題考查了二次函數(shù)圖象的平移,其規(guī)律是是:將二次函數(shù)解析式轉(zhuǎn)化成頂點(diǎn)式y(tǒng)=a(x-h)1+k
(a,b,c為常數(shù),a≠0),確定其頂點(diǎn)坐標(biāo)(h,k),在原有函數(shù)的基礎(chǔ)上“h值正右移,負(fù)左移;k值正上移,負(fù)下移”.14、±8【答案解析】
根據(jù)比例中項(xiàng)的定義即可求解.【題目詳解】∵b是a,c的比例中項(xiàng),若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案為±8【答案點(diǎn)睛】此題考查了比例中項(xiàng)的定義,如果作為比例線段的內(nèi)項(xiàng)是兩條相同的線段,即a∶b=b∶c或,那么線段b叫做線段a、c的比例中項(xiàng).15、【答案解析】
可以取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當(dāng)CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.【題目詳解】如圖,取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當(dāng)CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【答案點(diǎn)睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關(guān)鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.16、.【答案解析】
延長FP交AB于M,當(dāng)FP⊥AB時,點(diǎn)P到AB的距離最?。\(yùn)用勾股定理求解.【題目詳解】解:如圖,延長FP交AB于M,當(dāng)FP⊥AB時,點(diǎn)P到AB的距離最?。逜C=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=AF=1,∴FM==1,∵FP=FC=1,∴PM=MF-PF=1-1,∴點(diǎn)P到邊AB距離的最小值是1-1.故答案為:1-1.【答案點(diǎn)睛】本題考查了翻折變換,涉及到的知識點(diǎn)有直角三角形兩銳角互余、勾股定理等,解題的關(guān)鍵是確定出點(diǎn)P的位置.17、50【答案解析】
根據(jù)BC是直徑得出∠B=∠D=40°,∠BAC=90°,再根據(jù)半徑相等所對應(yīng)的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC【題目詳解】∵BC是直徑,∠D=40°,∴∠B=∠D=40°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=40°,∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.故答案為:50【答案點(diǎn)睛】本題考查了圓的基本概念、角的概念及其計算等腰三角形以及三角形的基本概念,熟悉掌握概念是解題的關(guān)鍵18、x<【答案解析】解:去括號得:2x-5<7-x+5,移項(xiàng)、合并得:3x<17,解得:x<.故答案為:x<.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【答案解析】
(1)由點(diǎn)A、B坐標(biāo)利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點(diǎn)G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點(diǎn)H,交CP于點(diǎn)K,連接AK,易得四邊形OBHC是正方形,應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點(diǎn)K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設(shè)點(diǎn)P的坐標(biāo)為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點(diǎn)D坐標(biāo)為(6,1),設(shè)P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當(dāng)1<m<6時,由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結(jié)合AQ∥DM可得答案.②當(dāng)m>6時,同理可得.【題目詳解】解:(1)將點(diǎn)A(2,0)和點(diǎn)B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點(diǎn)B作BG⊥CA,交CA的延長線于點(diǎn)G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點(diǎn)B作BH⊥CD于點(diǎn)H,交CP于點(diǎn)K,連接AK.易得四邊形OBHC是正方形.應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點(diǎn)K(1,),設(shè)直線CK的解析式為y=hx+1,將點(diǎn)K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設(shè)點(diǎn)P的坐標(biāo)為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點(diǎn)P的坐標(biāo)為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴點(diǎn)D(6,1),根據(jù)題意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①當(dāng)1<m<6時,DM=6﹣m,如圖3,∵△OAN∽△HAP,∴,∴=,∴ON===m﹣1,∵△ONQ∽△HMQ,∴,∴,∴,∴OQ=m﹣1,∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,∴AQ=DM=6﹣m,又∵AQ∥DM,∴四邊形ADMQ是平行四邊形.②當(dāng)m>6時,同理可得:四邊形ADMQ是平行四邊形.綜上,四邊形ADMQ是平行四邊形.【答案點(diǎn)睛】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)及勾股定理、三角函數(shù)等知識點(diǎn).20、(1)y1=-20x+1200,800;(2)15≤x≤40.【答案解析】
(1)根據(jù)圖中的已知點(diǎn)用待定系數(shù)法求出一次函數(shù)解析式(2)設(shè)y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范圍內(nèi)求出解即可.【題目詳解】解:(1)設(shè)y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,當(dāng)x=20時,y1=-20×20+1200=800,(2)設(shè)y2=kx+b,把(20,0)和(60,1000)代入得則,所以y2=25x-500,當(dāng)0≤x≤20時,y=-20x+1200,當(dāng)20<x≤60時,y=y1+y2=-20x+1200+25x-500=5x+700,由題意解得該不等式組的解集為15≤x≤40所以發(fā)生嚴(yán)重干旱時x的范圍為15≤x≤40.【答案點(diǎn)睛】此題重點(diǎn)考察學(xué)生對一次函數(shù)和一元一次不等式的實(shí)際應(yīng)用能力,掌握一次函數(shù)和一元一次不等式的解法是解題的關(guān)鍵.21、(1)詳見解析;(2)平行四邊形.【答案解析】
(1)由“三線合一”定理即可得到結(jié)論;
(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根據(jù)垂直平分線的性質(zhì)有AB=BE,于是AD=BE,進(jìn)而得到AD=EC,根據(jù)平行四邊形的判定即可得到結(jié)論.【題目詳解】證明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四邊形,證明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四邊形AECD是平行四邊形.【答案點(diǎn)睛】考查等腰直角三角形的性質(zhì)以及平行四邊形的判定,掌握平行四邊形的判定方法是解題的關(guān)鍵.22、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【答案解析】測試卷分析:(1)①過點(diǎn)E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設(shè)AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點(diǎn)F是AB的中點(diǎn).;(2)過點(diǎn)E作EM⊥AB,垂足為M,延長ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點(diǎn)E作EM⊥AB,垂足為M,延長ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設(shè)AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.測試卷解析:(1)①過點(diǎn)E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②設(shè)AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點(diǎn)F是AB的中點(diǎn).(2)△EFC是等腰直角三角形.過點(diǎn)E作EM⊥AB,垂足為M,延長ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設(shè)AM=x,則DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)過點(diǎn)E作EM⊥AB,垂足為M,延長ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC=90°,∴∠CEG+∠FEG=90°.又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG=∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM(ASA),∴AM=FM.設(shè)AM=x,則AF=2x,DN=x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考點(diǎn):四邊形綜合題.23、(1)50、10、0.16;(2)144°;(3).【答案解析】
(1)由B觀點(diǎn)的人數(shù)和所占的頻率即可求出總?cè)藬?shù);由總?cè)藬?shù)即可求出a、b的值,(2)用360°乘以D觀點(diǎn)的頻率即可得;(3)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解【題目詳解】解:(1)參加本次討論的學(xué)生共有12÷0.24=50,則a=50×0.2=10,b=8÷50=0.16,故答案為50、10、0.16;(2)D所在扇形的圓心角的度數(shù)為360°×0.4=144°;(3)根據(jù)題意畫出樹狀圖如下:由樹形圖可知:共有12中可能情況,選中觀點(diǎn)D(合理競爭,合作雙贏)的概率有6種,所以選中觀點(diǎn)D(合理競爭,合作雙贏)的概率為.【答案點(diǎn)睛】此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.24、(1)50;(2)詳見解析;(3)220.【答案解析】
(1)利用1組的人數(shù)除以1組的頻率可求此次抽查了多少名學(xué)生的成績;(2)根據(jù)總數(shù)乘以3組的頻率可求a,用50減去其它各組的頻數(shù)即可求得b的值,再用1減去其它各組的頻率即可求得c的值,即可把頻數(shù)分布直方圖補(bǔ)充完整;(3)先得到成績優(yōu)秀的頻率,再乘以500即可求解.【題目詳解】解:(1)4÷0.08=50(名).答:此次抽查了50名學(xué)生的成績;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如圖所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次測試九年級學(xué)生中成績優(yōu)秀的人數(shù)是220名.【答案點(diǎn)睛】本題主要考查數(shù)據(jù)的收集、處理以及統(tǒng)計圖表。25、(1)詳見解析;(2)詳見解析;(3)①α+β=90°;②成立,理由詳見解析.【答案解析】
(1)作OH⊥AB于H,根據(jù)線段垂直平分線的性質(zhì)得到OD=OA,OB=OC,證明△OCE≌△OBH,根據(jù)全等三角形的性質(zhì)證明;(2)證明△OCD≌△OBA,得到AB=CD,根據(jù)直角三角形的性質(zhì)得到OE=CD,證明即可;(3)①根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算;②延長OE至F,是EF=OE,連接FD、FC,根據(jù)平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì)證明.【題目詳解】(1)作OH⊥AB于H,∵AD、BC的垂直平分線相交于點(diǎn)O,∴OD=OA,OB=OC,∵△ABO是等邊三角形,∴OD=OC,∠AOB=60°,∵∠AOB+∠COD=180°∴∠COD=120°,∵OE是邊CD的中線,∴OE⊥CD,∴∠OCE=30°,∵OA=OB,OH⊥AB,∴∠BOH=30°,BH=AB,在△OCE和△BOH中,,∴△OCE≌△OBH,∴OE=BH,∴OE=AB;(2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD和△OBA中,,∴△OCD≌△OBA,∴AB=CD,∵∠COD=90°,OE是邊CD的中線,∴OE=CD,∴OE=AB;(3)①∵∠OAD=α,OA=OD,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延長OE至F,使EF=OE,連接FD、FC,則四邊形FDOC是平行四邊形,∴∠OCF+∠COD=180°,,∴∠AOB=∠FCO,在△FCO和△AOB中,,∴△FCO≌△AOB,∴FO=AB,∴OE=FO=AB.【答案點(diǎn)睛】本題是四邊形的綜合題,考查了線段垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)以及直角三角形斜邊上的中線性質(zhì)、平行四邊形的判定與性質(zhì)等知識;熟練掌握平行四邊形的判定與性質(zhì),證明三角形全等是解題的關(guān)鍵.26、(4)y=﹣x4﹣4x+3;(4);(3)點(diǎn)P的坐標(biāo)是(4,0)【答案解析】
(4)先求得拋物線的對稱軸方程,然后再求得點(diǎn)C的坐標(biāo),設(shè)拋物線的解析式為y=a(x+4)4+4,將點(diǎn)(-3,0)代入求得a的值即可;(4)先求得A、B、C的坐標(biāo),然后依據(jù)兩點(diǎn)間的距離公式可得到BC、AB,AC的長,然后依據(jù)勾股定理的逆定理可證明∠ABC=90°,最后,依據(jù)銳角三角函數(shù)的定義求解即可;(3)連接BC,可證得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入個數(shù)據(jù)可得OP的值,可得P點(diǎn)坐標(biāo).【題目詳解】解:(4)由題意得,拋物線y=ax4+4ax+c的對稱軸是直線,∵a<0,拋物線開口向下,又與x軸有交點(diǎn),∴拋物線的頂點(diǎn)C在x軸的上方,由于拋物線頂點(diǎn)C到x軸的距離為4,因此頂點(diǎn)C的坐標(biāo)是(﹣4,4).可設(shè)此拋物線的表達(dá)式是y=a(x+4)4+4,由于此拋物線與x軸的交點(diǎn)A的坐標(biāo)是(﹣3,0),可得a=﹣4.因此,拋物線的表達(dá)式是y=﹣x4﹣4x+3.(4)如圖4,點(diǎn)B的坐標(biāo)是(0,3).連接BC.∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,得AB4+BC4=AC4.∴△ABC為直角三角形,∠ABC=90°,所以tan∠CAB=.即∠CAB的正切值等于.(3)如圖4,連接BC,∵OA=OB=3,∠AOB=90°,∴△AOB是等腰直角三角形,∴∠BAP=∠ABO=45°,∵∠CAO=∠ABP,∴∠CAB=∠OBP,∵∠ABC=∠BOP=90°,∴△ACB∽△BPO,∴,∴,OP=4,∴點(diǎn)P的坐標(biāo)是(4,0).【答案點(diǎn)睛】本題主要考查二次函數(shù)的圖像與性質(zhì),綜合性大.27、(1)A(4,0),C(3,﹣3);(2)m=;(3)E點(diǎn)的坐標(biāo)為(2,0)或(,0)或(0,﹣4);【答案解析】
方法一:(1)m=2時,函數(shù)解析式為y=,分別令y=0,x=1,即可求得點(diǎn)A和點(diǎn)B的坐標(biāo),進(jìn)而可得到點(diǎn)C的坐標(biāo);(2)先用m表示出P,AC三點(diǎn)的坐標(biāo),分別討論∠APC=,∠ACP=,∠PAC=三種情況,利用勾股定理即可求得m的值;(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過點(diǎn)F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,NP:NF=BC:BP求得直線PE的解析式,后利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形求得E點(diǎn)坐標(biāo).方法二:(1)同方法一.(2)由△ACP為直角三角形,由相互垂直的兩直線斜率相乘為-1,可得m的值;(3)利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形,分別討論E點(diǎn)再x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 目標(biāo)明確的市政工程考試備考策略與試題及答案
- 公共關(guān)系中的輿情監(jiān)測技術(shù)試題及答案
- 2025年公共關(guān)系學(xué)策略制定試題及答案
- 農(nóng)村平房買房合同范例
- it行業(yè)工作合同范例
- 工程項(xiàng)目管理考試的專家建議與試題及答案
- 2025市政工程考試課程全面提高的策略與試題及答案
- 2025年中級經(jīng)濟(jì)師的經(jīng)濟(jì)學(xué)前沿問題試題及答案
- 創(chuàng)業(yè)導(dǎo)師合同標(biāo)準(zhǔn)文本
- 出租他人合同范例
- 《社會保險知識普及教學(xué)課件》
- 延安通和電業(yè)有限責(zé)任公司招聘筆試真題2024
- 上海市松江區(qū)2024-2025學(xué)年七年級下學(xué)期期中數(shù)學(xué)試卷
- 2024年新疆吉木乃縣事業(yè)單位公開招聘輔警23名筆試題帶答案
- 統(tǒng)編版2024-2025第二學(xué)期小學(xué)六年級期末語文測試卷(有答案)
- 2025年物流管理專業(yè)考試試卷及答案
- 昆明理工大學(xué)津橋?qū)W院教職工招聘真題2024
- 2025年全國保密教育線上培訓(xùn)考試試題庫及參考答案【鞏固】含答案詳解
- 品質(zhì)組長考試試題及答案
- 2025年高考語文大題突破訓(xùn)練:微寫作(北京專用)解析版
- 中藥學(xué)三基題庫
評論
0/150
提交評論