上海市徐匯區(qū)、金山區(qū)、松江區(qū)2023屆高一上數(shù)學(xué)期末統(tǒng)考試題含解析_第1頁
上海市徐匯區(qū)、金山區(qū)、松江區(qū)2023屆高一上數(shù)學(xué)期末統(tǒng)考試題含解析_第2頁
上海市徐匯區(qū)、金山區(qū)、松江區(qū)2023屆高一上數(shù)學(xué)期末統(tǒng)考試題含解析_第3頁
上海市徐匯區(qū)、金山區(qū)、松江區(qū)2023屆高一上數(shù)學(xué)期末統(tǒng)考試題含解析_第4頁
上海市徐匯區(qū)、金山區(qū)、松江區(qū)2023屆高一上數(shù)學(xué)期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數(shù)(,且)在上的最大值為4,且函數(shù)在上是減函數(shù),則實數(shù)的取值范圍為()A. B.C. D.2.函數(shù)的單調(diào)遞減區(qū)間為()A. B.C. D.3.已知不等式的解集為,則不等式的解集是()A. B.C.或 D.或4.若,則的最小值為A.-1 B.3C.-3 D.15.函數(shù)在區(qū)間上的最大值為2,則實數(shù)的值為A.1或 B.C. D.1或6.已知全集,則正確表示集合和關(guān)系的韋恩圖是A. B.C. D.7.已知,都為單位向量,且,夾角的余弦值是,則A. B.C. D.8.若函數(shù)的圖象與軸有交點,且值域,則的取值范圍是()A. B.C. D.9.已知函數(shù),則()A.0 B.1C.2 D.1010.圓x2+y2-4x+6y=0和圓x2+y2-6x=0交于A,B兩點,則AB的垂直平分線的方程是()A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=0二、填空題:本大題共6小題,每小題5分,共30分。11._____.12.若冪函數(shù)在區(qū)間上是減函數(shù),則整數(shù)________13.在平面直角坐標(biāo)系中,動點P到兩條直線與的距離之和等于2,則點P到坐標(biāo)原點的距離的最小值為_________.14.=_______.15.已知函數(shù),則______.16.下列五個結(jié)論:集合2,3,4,5,,集合,若f:,則對應(yīng)關(guān)系f是從集合A到集合B的映射;函數(shù)的定義域為,則函數(shù)的定義域也是;存在實數(shù),使得成立;是函數(shù)的對稱軸方程;曲線和直線的公共點個數(shù)為m,則m不可能為1;其中正確有______寫出所有正確的序號三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知直線經(jīng)過直線與的交點.(1)點到直線的距離為3,求直線的方程;(2)求點到直線的距離的最大值,并求距離最大時的直線的方程18.已知函數(shù)(1)請在給定的坐標(biāo)系中畫出此函數(shù)的圖象;(2)寫出此函數(shù)的定義域及單調(diào)區(qū)間,并寫出值域.19.計算(1);(2)計算:;(3)已知,求.20.求值:(1);(2)21.已知.(1)求,的值;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由函數(shù)(,且)在上的最大值為4,分情況討論得到,從而可得函數(shù)單調(diào)遞增,而在上是減函數(shù),所以可得,由此可求得的取值范圍【詳解】當(dāng)時,函數(shù)單調(diào)遞增,據(jù)此可知:,滿足題意;當(dāng)時,函數(shù)單調(diào)遞減,據(jù)此可知:,不合題意;故,函數(shù)單調(diào)遞增,若函數(shù)在上是減函數(shù),則,據(jù)此可得故選:A【點睛】此題考查對數(shù)函數(shù)的性質(zhì),考查指數(shù)函數(shù)的性質(zhì),考查分類討論思想,屬于基礎(chǔ)題.2、A【解析】解不等式,,即可得答案.【詳解】解:函數(shù),由,,得,,所以函數(shù)的單調(diào)遞減區(qū)間為,故選:A.3、A【解析】由不等式的解集為,可得的根為,由韋達(dá)定理可得的值,代入不等式解出其解集即可.【詳解】的解集為,則的根為,即,,解得,則不等式可化為,即為,解得或,故選:A.4、A【解析】分析:代數(shù)式可以配湊成,因,故可以利用基本不等式直接求最小值.詳解:,當(dāng)且僅當(dāng)時等號成立,故選A.點睛:利用基本不等式求最值時,要注意“一正、二定、三相等”,有時題設(shè)給定的代數(shù)式中沒有和為定值或積為定值的形式,我們需要對代數(shù)式變形,使得變形后的代數(shù)式有和為定值或者積為定值.特別要注意檢驗等號成立的條件是否滿足.5、A【解析】化簡可得,再根據(jù)二次函數(shù)的對稱軸與區(qū)間的位置關(guān)系,結(jié)合正弦函數(shù)的值域分情況討論即可【詳解】因,令,故,當(dāng)時,在單調(diào)遞減所以,此時,符合要求;當(dāng)時,在單調(diào)遞增,在單調(diào)遞減故,解得舍去當(dāng)時,在單調(diào)遞增所以,解得,符合要求;綜上可知或故選:A.6、B【解析】∵集合∴集合∵集合∴故選B7、D【解析】利用,結(jié)合數(shù)量積的定義可求得的平方的值,再開方即可【詳解】依題意,,故選D【點睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運算,屬基礎(chǔ)題.向量數(shù)量積的運算主要掌握兩點:一是數(shù)量積的基本公式;二是向量的平方等于向量模的平方.8、D【解析】由函數(shù)有零點,可求得,由函數(shù)的值域可求得,綜合二者即可得到的取值范圍.【詳解】定義在上的函數(shù),則,由函數(shù)有零點,所以,解得;由函數(shù)的值域,所以,解得;綜上,的取值范圍是故選:D9、B【解析】根據(jù)分段函數(shù)的解析式直接計算即可.【詳解】.故選:B.10、C【解析】兩圓公共弦的垂直平分線的方程即為兩圓圓心所在直線的方程,求出兩圓的圓心,從而可得答案.【詳解】解:AB的垂直平分線的方程即為兩圓圓心所在直線的方程,圓x2+y2-4x+6y=0的圓心為,圓x2+y2-6x=0的圓心為,則兩圓圓心所在直線的方程為,即3x-y-9=0.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用誘導(dǎo)公式變形,再由兩角和的余弦求解【詳解】解:,故答案為【點睛】本題考查誘導(dǎo)公式的應(yīng)用,考查兩角和的余弦,是基礎(chǔ)題12、2【解析】由題意可得,求出的取值范圍,從而可出整數(shù)的值【詳解】因為冪函數(shù)在區(qū)間上是減函數(shù),所以,解得,因為,所以,故答案為:213、【解析】∵3x﹣y=0與x+3y=0的互相垂直,且交點為原點,∴設(shè)點P到兩條直線的距離分別為a,b,則a≥0,b≥0,則a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴當(dāng)a=1時,的距離,故答案為14、##【解析】利用對數(shù)的運算法則進(jìn)行求解.【詳解】.故答案為:.15、2【解析】根據(jù)自變量的范圍,由內(nèi)至外逐層求值可解.【詳解】又故答案為:2.16、【解析】由,,結(jié)合映射的定義可判斷;由由,解不等式可判斷;由輔助角公式和正弦函數(shù)的值域,可判斷;由正弦函數(shù)的對稱軸,可判斷;由的圖象可判斷交點個數(shù),可判斷【詳解】由于,,B中無元素對應(yīng),故錯誤;函數(shù)的定義域為,由,可得,則函數(shù)的定義域也是,故正確;由于的最大值為,,故不正確;由為最小值,是函數(shù)的對稱軸方程,故正確;曲線和直線的公共點個數(shù)為m,如圖所示,m可能為0,2,3,4,則m不可能為1,故正確,故答案為【點睛】本題主要考查函數(shù)的定義域、值域和對稱性、圖象交點個數(shù),考查運算能力和推理能力,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)x=2或4x-3y-5=0(2)見解析【解析】(1)設(shè)過兩直線的交點的直線系方程,再根據(jù)點到直線的距離公式,求出的值,得出直線的方程;(2)先求出交點P的坐標(biāo),由幾何的方法求出距離的最大值【詳解】(1)因為經(jīng)過兩已知直線交點直線系方程為(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,點到直線的距離為3,所以=3,解得λ=或λ=2,所以直線l的方程為x=2或4x-3y-5=0.(2)由解得交點P(2,1),如圖,過P作任一直線l,設(shè)d為點A到直線l的距離,則d≤|PA|(當(dāng)l⊥PA時等號成立)所以dmax=|PA|=此時直線l的方程為:3x-y-5=018、(1)答案見解析(2)答案見解析【解析】(1)根據(jù)函數(shù)解析式,分別作出各段圖象即可;(2)由解析式可直接得出函數(shù)的定義域,由圖觀察,即可得到單調(diào)區(qū)間以及值域【詳解】圖象如圖所示(2)定義域為或或,增區(qū)間為,減區(qū)間為,,,,值域為19、(1);(2);(3)【解析】(1)(2)根據(jù)分?jǐn)?shù)指數(shù)冪的定義,及指數(shù)的運算性質(zhì),代入計算可得答案;(3)由,可得,即,將所求平方,代入即可得答案【詳解】(1);(2)(3)∵=3,∴()2=x2+x﹣2+2=9,∴x2+x﹣2=7則()2=x2+x﹣2﹣2=5,∴【點睛】此題主要考查指對冪四則運算,熟練掌握指

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論