




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
GlossaryGlossary4-Block……………aerror……………arisk………………
Accuracy…………
Active(opportunityordefect)…
AdvocacyTeam…AlternateHypothesis…………
ANOVA……………
ANOVAmethod(GaugeR&R)…
Assignablecausevariation……
AttributeChart…
Attributedata……
Average………Graphicaltooltoshowtherelationshipbetweenprocesscapability,control&technology.
Theerrormadeifdifferenceisclaimed,whentherealityissameness(e.g.rejectinggoodparts;Producer’sRisk).
Therisk(probability)ofmakinganaerror(frequentlysetat5%).
Howclosemeasurementsare,onaverage,totheirtarget.
Anopportunityordefectthatisbeingmeasured(adefectwearelookingfor).
ThegroupofpeoplewhohaveastakeintheSixSigmaproject,includingthosewhomustkeepitincontrol.
SeeHa
AnalysisofVariance.Astatisticalmethodofquantifyingcontributionsofdiscretelevelsof“X”stothevariationina“Y”response.AMinitabselectionforGaugeR&Rthatincludesoperator-partinteractioninthecalculationofvariationcontributions.ThemostaccuratemethodforGaugeR&R.Removablevariationinaprocess;variationduetooutsideinfluences.See‘BlackNoise’.StatisticalProcessControl(SPC)chartfordiscretedata.Includesp,np,canducharts.
Datathatcanbedescribedbylevels,integervaluesorcategoriesonly.SeeDiscretedata.Thesumofalldatainasampledividedbythenumberofdatapointsinthesample.SeeMean.4-Block……………Graphicaltberror……………brisk……………
Baselining………
Benchmarking……
BlackBelt………BlackNoise………
Boxplot…………
Brainstorming……Centring…………CentringofXvariables…………CentralLimitTheorem…………Theerrormadeifsamenessisclaimed,whentherealityisdifference(e.g.acceptingbadparts-Consumer’sRisk).
Therisk(probability)ofmakingabetaerror(frequentlysetat10%).Evaluatingthecapabilityofaprocessasitstandstoday,without“tweaking”-i.e.passiveobservation.
Evaluatingthecapabilityofsimilarprocessestoquantifywhatconstitutes‘theBest’.ApersonwhosefulltimejobconsistsofapplicationofSixSigmatools/methodsonprojects.
Processvariationdueto‘outsideinfluences’.SeeAssignableCauseVariation.Graphshowingtheportionofadistributionbetweenthefirstandthirdpercentileswithina‘box’.Theboxplotalsoshowsthemedianofthedistributionandtheextremevalues.Oftenusedtocomparepopulation.
AtechniqueusedbyanAdvocacyTeamto,fore.g.,developalistofpotentialX’satthebeginningofproject.
Aprocesscharacteristicdescribinghowwellthemeanofthesamplecorrespondstothetargetvalue.
AmethodusedtotransformXvariablesinDoE’sthatdevelophigherorder(quadratic)models;reducescorrelationbetweenX’s.
Afundamentalstatisticaltheoremstatingthatthedistributionofaveragesofacharacteristictendstobenormal,evenwhentheparentpopulationishighlynon-normal.
berror……………TheerrorCentralCompositeDesign……
Champion…………
ChampionReview………………
Chi-Squaredtest…
ClassicalYield……CommonCauseVariation………
ComponentsSearch……………
Confidence………
ConfidenceInterval………………
Consumer…………
ContinuousData…ADesignofExperiments(DoE)methodwhereeachXistestedat5levels(see‘StarPoints’).
ACCDprovidesthecapabilitytomodela
processwithaquadraticequationORalinear
equation.
Typicallyadirector-someonewhocansupporttheSixSigmaprojectandhastheauthoritytoremovebarriersandprovideresources.TakesanactivepartinProjectReview.
AregularmeetingtopresentSixSigmaprojects,shareexperiencesandremoveroadblocks.
Hypothesistestfordiscretedata.Evaluatestheprobabilitythatcountsindifferentcellsaredependentononeanother,ortestsGoodnessofFittosomeaprioriprobabilitydistribution.
See“FirstPassYield”.GoodunitsproduceddividedbyTotalUnitsProduced.
See“WhiteNoise”.Theinherentvariationofaprocess,freefromexternalinfluences.Usuallymeasuredoverashorttimeperiod.AmethodofscreeningforVitalFewX’sinmanufacturedassemblies.Alsoknownas‘PartSwapping’.Thecomplementofalpharisk.Confidence=1-a.
Arangeofplausiblevaluesforapopulationparameter,suchasmeanorstandarddeviation.
Theenduserofaproduct(thehomeowner,fore.g.).Theconsumerisexternaltothebusiness.
Datathatcanbemeaningfullybrokendownintosmallerandsmallerincrements-e.g.length,temperatureetc.)CentralCompositeDesign……ADContourPlot…ControlLimits………………CostofQuality………………Cp……………Cpk……………
CQ……………
CTQ…………CubePlot……
Customer……
DataWindow…Defect…………DependentVariable…………AgraphusedtoanalyzeexperimentsofaCentralCompositeDesign.TwoX’scomprisetheaxes,andlevelsofconstantYareshowninthebodyofgraph.Resemblesatopographicalmap.
LinesonaStatisticalProcessControl(SPC)chartthatrepresentdecisioncriteriafortakingactionontheprocess.Linesaredrawn+/-3standarddeviations(s)fromthemean.
Afinancialreconciliationofallthecostsassociatedwithdefects(scrap,rework,concessionsetc.)
StatisticusedtomeasureProcessCapability.Assumesdataiscentredontarget.SimilarinconcepttoZ.st
StatisticusedtomeasureProcessPerformance.Doesnotassumecentreddata.SimilarinconcepttoZ.lt
CommercialQuality.Usedtocategorizenon-manufacturingprojectsthatimpacttheconsumerand/orcustomer.
Critical-to-Qualitycharacteristic.Anaspectoftheproductorservicethatisimportanttothecustomer/consumer.
Agraphusedforanalysisoftheresultsofafactorialdesignedexperiment(DoE).Showstestconditionsthatoptimizetheresponse.
Therecipientoftheoutputofaprocess.Maybeinternal(e.g.Assemblyisacustomeroffinishingshops),orexternal(e.g.Currys,Bellingetc.)whothensellourproductstoconsumers.
ThespreadsheetwindowinMinitabwheredataisenteredforanalysis.
Anyaspectofapartorprocessthatdoesnotconformtorequirements.
Theoutputofaprocess.The“Y”response.ContourPlot…AgraphusDescriptiveStatistics………
DesignofExperiments(DoE)DiscreteData………………Dotplot………DPMO…………
DPO…………
DPU…………e(ExponentialFunction)……Entitlement…
ExecutiveSummary………F-test…………Mean,StandardDeviation,Varianceandothervaluescalculatedfromsamplecharacteristics.Alsoincludesassortedgraphs.
Astatisticalfieldofstudywhereindependentvariables(X’s)aresystematicallymanipulatedandtheresponseobserved.UsedtodemonstratewhichX’saretheVitalFew,andtooptimizetheresponse.
Datathatcanonlybedescribedbylevels,i.e.pass/fail,operatora/b/c,integervalues(e.g.numberofdefects).Datathatcannotbebrokendownintofinerincrements.
Frequencydiagramrepresentingdataby‘dots’alongahorizontalaxis.Generallyusedasanalternativetoahistogramforsmallsamplesizes.
DefectsPerMillionOpportunities-1,000,000multipliedbytotalnumberofdefects,dividedbythetotalnumberofopportunities.Ametricfordefectsequivalenttoppmusedfordefectives.
DefectsPerOpportunity-totalnumberofdefectsdividedbytotalnumberofopportunities.UsedtoentertheNormalTabletoobtainZvalues.
Defectsperunit-totalnumberofdefectsdividedbytotalnumberofunits.UsedprimarilytocalculateRolledThroughputYield(Y.rt)throughthePoissonformulaY.rt=e-DPU.Amathematicconstantroughlyequalto2.718
Mathematicalidentity:ln(e)=1Z.stThebesttheprocesscanbe.WhattheprocesswouldlooklikeifallAssignableCauseVariationwascontrolled.ThefirstpageofoutputfromtheMinitabProcessCapabilityselection.Atesttocomparevariancesof2ormoresamples,andtocomparetheequalityoftwoormoremeans(inANOVA).DescriptiveStatistics………MeanFactorialExperiment………FractionalFactorialExperiment.
FirstPassYield………………
FMEA……………
FunctionalOwner……………GaugeXBRmethod…………
GanttChart……
GaugeR&R……
GreenBelt………
Ha………………
Ho………………Adesignedexperiment(DoE)whichinvolvestestingofallpossiblecombinationsofindependent(X)variables.
Adesignedexperiment(DoE)whichinvolvestestingafractionofallpossiblecombinationsofindependent(X)variablesinafullFactorialexperiment.Resultsinfewertestruns.See‘ClassicalYield’.Equaltothenumberofgoodunitsproduceddividedbythetotalnumberofunitsproduced.FailureModeandEffectsAnalysis-ateam-basedprocedurethatidentifiesanddocumentsallpossiblefailuremodes,effects,causesandassociatedcorrectiveactions.
Thepersonwithfinancialresponsibilityfortheprocessunderconsideration.
GaugeR&Rmethod-anoptioninMinitab.Aprojectmanagementtoolthatgraphsmilestonesvs.thecalendar.Barsareusedtoindicatebothplannedandactualdurationoftasks.
Ameansofdeterminingtheacceptabilityofthevariabilityinthegaugingsystemforuseintheprocess.
ApersonwhousesSixSigmatoolsandmethodologyinthecourseoftheirwork,andwhoalwayshasaSixSigmaprojectactiveintheirplaceofwork.
AlternateHypothesis(hypothesisofdifference).Thehypothesisbeingproveninastatisticalhypothesistest.
Nullhypothesis(hypothesisofsameness).Thestartingassumptioninastatisticalhypothesistest.NB.Thenullhypothesiscannotbeproved!FactorialExperiment………AdesiHistogram……
HomogeneityofVariance……Hypothesistest………………
I/MRChart………
IndependentVariable…………Inferentialstatistics……………
InherentProcessCapability…
Interactionplot………………Afrequencydiagramcomposedofrectangularbarswhoserelativeheightsindicatethenumberofcounts(orrelativefrequency)ataparticularlevel.AmenuselectioninMinitabunderwhichtheF-test(comparisonofvariances)isperformedAnyofseveralstatisticaltestsof2ormoresamplesfrompopulations.Usedtodetermineiftheobserveddifferencescanbeattributabletochancealone.Theresultofthetestistoeitheracceptorrejectthealternatehypothesis(Ha).(t-test,F-testandChi-Squaredtestareexamples.)
Individual/MovingRangechart-aStatisticalProcessControl(SPC)chartinwhichtheuppergraphisusedtoplotindividualdatapointscomparedtocalculatedcontrollimits;thelowergraph(MovingRange)plotsthedifferencebetweensequentialdataaspointsonthechart.Controllimitsarealsocalculatedforthischart.Variables(X’s)thatinfluencetheresponseofadependentvariable(Y)Statisticalanalysesthatquantifytheriskofstatementsaboutpopulations,basedonsampledata.Inferentialstatisticsareusuallyhypothesistestsorconfidenceintervals.
TheBesttheprocesscanbe,withonlyvariationduetowhitenoisepresent.SeeEntitlement,Z.stAgraphusedtoanalysefactorialandfractionalfactorialdesignsofexperiments.IndicatestheeffectonYwhentwoX’sarechangedsimultaneously.ThegreaterthedifferenceinslopesbetweentheX’s,thegreatertheinteraction.Histogram……AfrequencyKurtosis…………L1Spreadsheet………………L2Spreadsheet……………
LCL(LowerControlLimit)…
LeverageVariable……………Linearity(gauge)………………
Longtermdata…LSL………………m…………………Macro……………
MainEffectsPlot………………MasterBlackBelt……………Comparisonoftheheightofthepeakofadistributiontothespreadofthe‘tails’.Thekurtosisvalueis3foraperfectnormaldistribution.ExcelspreadsheetfordiscretedatathatcalculatessubsystemZvaluesand‘rolls’themintoasystem-levelZvalue.ReplacedbyProductReportinMinitabrelease11.2
ExcelspreadsheetforcontinuousdatathatcalculatesZ.standZ.lt
ReplacedbyProcessReportsinMinitabrelease11.2
ThelowercontrolboundaryonaStatisticalProcessControl(SPC)chart.Alimitcalculatedasthemeanminus3standarddeviations.Note:SEM(StandardErroroftheMean)isusedfors;stdev=s/sqrt(n).
AnXvariablewithastronginfluenceontheYresponse.OneoftheVitalFew.
Thedifferenceintheaccuracyofthegaugefromthelowendtothehighendofthetestrange.
Dataobtainedinsuchawaythatitcontainsassignablecausevariation(‘blacknoise’).
LowerSpecificationLimit
ThemeanoraverageofapopulationAminiprogramwithinasoftwarepackagedesignedtoprovideaparticularoutput(e.g.GaugeR&R)Agraphusedtoanalyzefactorialandfractionalfactorialdesignsofexperiments.ComparestheeffectonYofanXatthe‘high’levelvs.itseffectatthe‘low’level.Slopeofthelineonthegraphindicatessignificance.
Acoach,mentorandtraineroftheSixSigmamethodologiesandtools.Kurtosis…………ComparisonMean……………MeasurementsSystems
Analysis………Median…………Minitab…………
NormalCurve…
NormalProbabilityPlot………
Normalize………NormalizedAverageYield……NullHypothesis………………Orthogonal……
p-value…………ParetoAnalysis………………Theaverage.Maybetheaverageofasample(x-bar),ortheaverageofapopulation(m).See‘GaugeR&R’.Themiddlevalueofasetofdata(the50thpercentile).AstatisticalsoftwarepackagecontainingthemajorityofSixSigmatools.Awidely-used,commonly-seendistributionwheredataissymmetricallydistributedaroundthemean(‘bellcurve’).Agraphicalhypothesistestinwhichsampledataiscomparedtoa‘perfectnormal’distribution.Ho:thesampledataisthesameasthe‘perfectnormal’distribution.Ha:thesampledataisdifferent(i.e.non-normal).Theprocessofconvertingnon-normaldatathroughtheuseofatransformationfunction.Theaverageyieldofaprocesswithmultiplestepsoroperations.Y.na=(Y.rt)1/nSee‘Ho’.Literally,“rightangles”.Afeatureofawell-definedexperimentthatallowsmaineffectstobeseparatedfrom2-wayandhigherorderinteractions,aswellasquadratic(squared)terms.Theprobabilityofmakinganalpha(a)error.Avalueusedextensivelyinhypothesistesting.Alsoreferredtoasthe‘observedlevelofsignificance’.p-valuesarecomparedtothe‘a(chǎn)cceptable’levelofalphariskinordertomakedecisionsinhypothesistests.Aproblemsolvingtoolthatallowscharacteristicstoberankedindescendingorderofimportance.Mean……………Theaverage.ParetoPrinciple………………Passive(opportunity/defect)…PointofInflexion………………PoissonApproximation………Population……PoweroftheTest……………ppm……………
PracticalProblem……………
PracticalSolution……………
Precision………Pre-Control……
PrincipleofReverseLoading..Probabilityofadefectp(d)…The“80-20”rule.Theprinciplethat20%ofthevariablescause80%ofthevariation.Adefectoropportunitythatiscounteduponoccurrence,butthatisnotpartoftheactivemonitoringprocess.Pointonthenormalcurvewhereitchangesfromconvextoconcave.Mathematicallydefinedbysettingthethirdderivativetozero.AmathematicalapproximationforRolledThroughputYield,givenDPU:Y.rt=e-DPU.Alldataofinterestforaparticularprocess,recordedornot.Usuallymodelledwithsamples.Thelikelihoodofdetectingbeneficialchange.Representedas1-b.Theprobabilityofrejectingthenullhypothesis.Partspermilliondefective.AdiscretemeasurementofdefectivesforlongtermdataTheoutputoftheMeasurephase.AcharacterizationoftheZvalue,centringandspreadforY.TheoutputoftheControlPhase.TheoptimisedXlevelsandcontrolplantomaintaintheprocessatitshighestZvalue.Howcloselythedataisclusteredaroundtheirmean.Describesthespreadofthedata.AStatisticalProcessControl(SPC)methodthatallowsanoperatortotakeactiononaprocessbasedonwherethepartmeasurementsfallinanormaldistribution.Partsarecodedred,yelloworgreen.Planningahead–Needtodefinewhatdoyouwanttoknow,sowhattool/testshouldbeused,sowhatdatadoyouneed?The‘tail’areaofthenormalcurve,beyondthespecificationlimit(s).ParetoPrinciple………………The“80ProblemStatement……………ProcessCapability……………ProcessCharacterization……ProcessMap…ProcessOptimisation…………
ProjectHopper………………QFD……………
Quartiles………R-bar/d………
RandomCauseVariation……Range…………RationalSubgrouping………Abriefbutsuccinctdescriptionoftheissueunderinvestigation.Includesthepracticalandbusinessreasonsfortheproject.Astatisticthatnumericallydescribeshowwelltheprocesscouldperformintheabsenceof‘blacknoise’.Examples:Z.st,CpUnderstandingtheY’sandX’sinaprocess.DevelopedthroughthetoolsoftheDefine,MeasureandAnalysephases.Aproblemsolvingtoolthatgraphicallydescribeseachsteporphaseinaprocess.DefiningthebestoperatingpointforX’sinaprocess.DevelopedthroughtoolsoftheImprove/Controlphases.AstackofpotentialSixSigmaprojects,tobepickedupbyBlackBeltsorGreenBeltswhenresourcesallow.QualityFunctionDeployment.ArigorousmethodofdeterminingtechnicalrequirementsandCTQ’sfromthedefinitionofConsumerCues.‘Quarters’ofapopulation.1/4ofthedatafallbelowthefirstquartile,1/4ofthedatafallabovethe3rdquartile.Anestimateofstandarddeviationusingtherangeofthedataandtabledadjustmentfactors.UsedincalculationofcontrollimitsinMinitabGaugeR&RXbargraphicaloutput.See‘WhiteNoise’.Theinherentvariationoftheprocess,freefromexternalinfluences.Thelargestvalueinadatasetminusthesmallestvalueinthedataset.Adatacollectiontechniquethatallowstheseparationofshorttermvariationfromlongtermvariation.ProblemStatement……………AbrieRegression……Repeatability(Gauge)………Repetition………Reproducibility(Gauge)………ResponseSurfaceExperiment
Resolution(Gauge)…………Resolution(Fractional
Factorial)…RolledThroughputYield……Astatisticalmodellingtoolthatallowsdatatoberepresentedbyanequation.UsedforcontinuousYresponses,usuallywithcontinuousXinputs.(ThereisspecialtechniquewithinMinitabcalledLogisticRegressionwhichhandlesspecialformsofdiscreteX’s.)Abilityofagaugetoconsistentlymeasurethesamepartwiththesameresults.PartoftheoutputofaGaugeR&Rstudy.Collectingmultipledatapointssequentiallyfromaprocess,withoutre-settingtheprocessAbilityofoperatorsofagaugetogenerateconsistentmeasurements.PartoftheoutputofaGaugeR&Rstudy.Adesignedexperiment(DoE)thatallowstheYresponsetobemodelledasafunctionofcontinuousXvariables.SeeRegressionalso.Theabilityofagaugetodiscriminateincrementsofacontinuousmeasurement.Gaugeresolutionisusuallyrequiredtobetentimesgreaterthanthemeasurementofinterest;i.e.,afeaturespecifiedwithaspecificationtoonedecimalplacewouldrequireagaugewitharesolutionoftwodecimalplacesetc.Aromannumeralthatindicatesthedegreeofconfoundinginafractionalfactorialdesign.Higherresolutionindicateslessconfounding-i.e.lessambiguityinthesourceofeffects.Y.rtTheproductofyieldsateachstepofaprocess.CanbeestimatedusingthePoissonApproximation.Regression……Astatistics…………………Sample………SessionWindow……………Shift……………Shorttermdata……………Sigma(s)………SixSigmaTeamMember……Skewness……Specification…Spread…………Stability(Gauge)………………StandardDeviation…………Thestandarddeviationofasample.Ameasureofspread(orvariability)ofthedata.s=sqrt[S(x-xbar)/(n-1)]Acollection(subset)ofdataintendedtorepresentthecharacteristicsoftheparentpopulation.Oneofthe4Minitabwindows.Usedforcommandentryanddataoutput.Thedifferencebetweenshort-termandlong-termprocessvariation.Z.shift=Z.st-Z.ltDataobtainedinsuchawaythatitcontainsNOassignablecausevariation(‘blacknoise’).Onlytheinherentprocessvariationisrepresented,whichallowscalculationofZ.stThestandarddeviationofapopulation.AstakeholderintheSixSigmaprocess.Apersonwhoneedstohaveanunderstandingofthemethodology,butdoesnotformallyusethetools.Evaluationofthesymmetryofadistribution.Skewness=0forperfectsymmetry;skewnessisnegativeifthedistributionisshiftedtotheright,positiveifshiftedtotheleft.Therequirementsofadesign,usuallyexpressedasatarget(ornominal)valuewithanassociatedallowabletoleranceforvariation(e.g.5.00cm+/-0.05cm)Howfarthedataisdistributedawayfromtheirmean.Consistencyofmeasurementvaluesobtainedwiththesamegaugeonthesamesetofparts,withmeasurementstakenatdifferenttimes.Gaugeinstabilitycanleadtocalibrationissues.Astatisticalmeasureofspreadordispersionfromameanvalue.s…………………ThestandarddStandardErroroftheMean…StandardNormalDeviate……StandardOrder………………StarPoint(s)……StatisticalProblem……………StatisticalProcessControl…StatisticalSolution……………Statistics………StepwiseRegression…………StructureTree………………Thestandarddeviationofxbar,basedonasamplesizeofn.(Alsoacorrectionfactorforstandarddeviationofrelativelysmallsamplesizes(<30).)Reducesthestandarddeviationofthesamplebysqrt(n).SEM=s/sqrt(n).See“Ztransform”.AfeatureoffactorialDesignofExperiments(DoE)thatdeterminestheorderofthehigh/lowsettingsoftheX’sforeachrunofanexperimentbyusingapre-determinedpatternof+1’sand-1’sforeachX.ExtremetestpointsinaCentralCompositeDesignofExperiments.Foundbytakingthefourthrootofthenumberof‘Cubepoints’(factorialpoints)inthedesignandadding/subtractingthisvaluefromtheCentrePoint.TheoutcomeoftheAnalyzephase.Istheproblemcentring,spreadorboth?SPC.Agraphicalmethodofmonitoringaprocessanddeterminingstatisticallywhentheprocessrequiresattentionbycomparingittoahistoricalmeanandcalculatedcontrollimitsat+/-3sigma.OutputoftheImprovephase.WheredotheX’sneedtobesettocontroltheY?Thestudyofvariation,includingmethodsofdescribing,quantifyingandreducingvariation,aswellasestimatingrisks.Aregressiontechniquewherethemodelisdevelopedonestepatatime,addingXvariablesoneatatimetothemodelinorderoftheircontributiontochangesinY.Aproblemsolvingtoollistingthecharacteristicsofinterestononesideofthepage,andshowingcontributingfactorstothecharacteristicsasbranches.StandardErroroftheMean…ThSubgroup………SustainedProcessCapabilityt-test……………
Target…………TechnicalRequirement………TestSensitivity(d/s)…………Tolerance………TOP(TotalOpportunities)……Transfer………Transform……TrivialManyX’s………………
UCL(UpperControlLimit)……Unit……………Asampleoflikepartsorrelateddatatakenconsecutivelythatcontainsonlyinherentprocessvariation(‘whitenoise’)CapabilityofaprocessinthelongtermZ.ltAstatisticaltestusedtocomparetwomeans,ortocompareameantoastandardvalue.ThespecifiedordesiredaverageofaprocessPhysicalorprocesscharacteristicthatmustbecontrolledtoaddressaConsumerCue-alsoknownas“TheGap”.Astatisticusedtodeterminesamplesizeforhypothesistesting.Comparesthedifferenceinmeanstothespreadofthedata.Theamountofvariationallowablebydesigninaprocess.Tolerance=USL-LSL.Numberofopportunitiesperunittimesthenumberofunits.ThelastphaseofaSixSigmaproject,whereknowledgegainedistransferredtoallothersimilarprocesses-iesynergy.Anymathematicalrelationshipusedtotranslatedataofonespaceintodataofanotherspace(e.g.transformstoconvertnon-normaldatatonormaldata;log,reciprocal,powerfunctionsetc.)The80%oftheindependentvariables(X’s)thatgenerateonly20%ofthetotalprocessvariation.Variablesthatinfluencetheprocess,butatamuchlesssignificantlevelthanthe‘VitalFew’.TheuppercontrolboundaryonaStatisticalProcessControl(SPC)chart.Alimitcalculatedasthemeanplus3standarddeviations.NOTE:SEM(StandardErroroftheMean)isusedfors:stdev=s/sqrt(n)Auser-definedquantityrepresentingtheoutputofaprocess.Maybeapart,systemSubgroup………AsampleofUnit……………
USL……………Variance………VitalFewX’s…WhiteNoise……X………………X-bar…………X-bar/Rchart…Yresponse……Y.ft……………Y.na……………Y.rt………………Z.bench………Auser-definedquantityrepresentingtheoutputofaprocess.Maybeapart,system,componentofapartorasub-system.UpperSpecificationLimit(StandardDeviation)2The20%oftheindependentvariablesthatgenerate80%ofthetotalprocessvariation.TheseareX’swhichmustbecontrolledtobringaprocesstoSixSigmalevelsofperformance.See‘CommonCauseVariation’.Thenaturalvariationwithintheprocess,freeofexternalinfluences.Theindependentvariable(s),orinput(s),ofaprocess.Themeanoraverageofasample.Thesumofalldatainthesampledividedbythenumberofsamples.AStatisticalProcessControl(SPC)chartinwhichtheuppergraphisusedtoplotsubgroupaveragescomparedtocalculatedcontrollimits;thelowergraph(Range)plotsthedifferencebetweenthehighandlowvalueofthesubgroup.ControllimitsarealsousedontheRangechart.Thedependentvariable,oroutput,ofaprocess.‘FirstTime’or‘FirstPass’Yield.ClassicalYield.Numberofgoodunits/totalproduced.‘NormalizedAverageYield’.
(RolledThroughputYield)1/n.Averageyieldateachstepoftheprocess.‘RolledThroughputYield’.Yieldsofallstepsoftheprocessmultipliedtogether.Thereportedprocesscapability.Avaluederivedbycombiningalldefectsintoonetailofthedistribution,thenreadingtheZvalueUnit……………Auser-definedZ.bench………Ztransform……Z.lt………………
Z.st……………Thereportedprocesscapability.Avaluederivedbycombiningalldefectsintoonetailofthedistribution,thenreadingtheZvaluefromaNormaltable.Maybeshorttermorlongterm(mustquotewhich).
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東舞蹈戲劇職業(yè)學(xué)院《臨床藥理學(xué)B》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)蒙古能源職業(yè)學(xué)院《軟件工程專(zhuān)業(yè)實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 安徽信息工程學(xué)院《氣象與生活》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北中醫(yī)藥高等專(zhuān)科學(xué)校《新媒體產(chǎn)品設(shè)計(jì)與制作實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 河南省豫東豫北十所名校2025屆高三第一次月考物理試題文試題含解析
- 常熟中學(xué)2025屆高三下第二次質(zhì)量檢查物理試題含解析
- 江西農(nóng)業(yè)大學(xué)《工程力學(xué)Ⅱ》2023-2024學(xué)年第一學(xué)期期末試卷
- 濰坊職業(yè)學(xué)院《高分子科學(xué)前沿與進(jìn)展》2023-2024學(xué)年第二學(xué)期期末試卷
- 貴州省南白中學(xué)2025屆高三下-第一次強(qiáng)化訓(xùn)練英語(yǔ)試題試卷含解析
- 供應(yīng)鏈管理與采購(gòu)制度
- (高清版)DZT 0426-2023 固體礦產(chǎn)地質(zhì)調(diào)查規(guī)范(1:50000)
- 海綿城市工程施工合同范本
- 《高溫熔融金屬吊運(yùn)安全規(guī)程》(AQ7011-2018)
- 教師命題能力培訓(xùn)
- 電機(jī)與拖動(dòng)(高職)全套教學(xué)課件
- 無(wú)人機(jī)操控技術(shù)(項(xiàng)目式 · 含工作頁(yè)) PPT 1-1 無(wú)人機(jī)概述
- 《數(shù)值分析》10.1 Euler 方法
- 汽修實(shí)訓(xùn)安全培訓(xùn)課件
- 醫(yī)學(xué)口腔科急救藥品及急救措施課件
- 土木工程無(wú)損檢測(cè)技術(shù)課件
- GB/T 22310-2023道路車(chē)輛制動(dòng)襯片盤(pán)式制動(dòng)襯塊受熱膨脹量試驗(yàn)方法
評(píng)論
0/150
提交評(píng)論