2023屆上海市南匯中學(xué)數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第1頁
2023屆上海市南匯中學(xué)數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第2頁
2023屆上海市南匯中學(xué)數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第3頁
2023屆上海市南匯中學(xué)數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第4頁
2023屆上海市南匯中學(xué)數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知函數(shù),則A.1 B.C.2 D.02.已知二次函數(shù)值域?yàn)椋瑒t的最小值為()A.16 B.12C.10 D.83.已知函數(shù),且,則A. B.0C. D.34.函數(shù)的圖像的一條對稱軸是()A. B.C. D.5.表示不超過x的最大整數(shù),例如,,,.若是函數(shù)的零點(diǎn),則()A.1 B.2C.3 D.46.已知是自然對數(shù)的底數(shù),函數(shù)的零點(diǎn)為,函數(shù)的零點(diǎn)為,則下列不等式中成立的是A. B.C. D.7.函數(shù)的零點(diǎn)一定位于區(qū)間()A. B.C. D.8.已知正實(shí)數(shù)x,y,z,滿足,則()A. B.C. D.9.某人去上班,先跑步,后步行.如果y表示該人離單位的距離,x表示出發(fā)后的時間,那么下列圖象中符合此人走法的是().A. B.C. D.10.下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則11.用區(qū)間表示不超過的最大整數(shù),如,設(shè),若方程有且只有3個實(shí)數(shù)根,則正實(shí)數(shù)的取值范圍為()A B.C. D.12.函數(shù)f(x)=-4x+2x+1的值域是()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知點(diǎn),,在函數(shù)的圖象上,如圖,若,則______.14.正三棱錐P﹣ABC的底面邊長為1,E,F(xiàn),G,H分別是PA,AC,BC,PB的中點(diǎn),四邊形EFGH的面積為S,則S的取值范圍是__15.已知函數(shù),若,則的取值范圍是__________16.已知圓C:(x﹣2)2+(y﹣1)2=10與直線l:2x+y=0,則圓C與直線l的位置關(guān)系是_____三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù)(1)若是定義在上的偶函數(shù),求實(shí)數(shù)的值;(2)在(1)條件下,若,求函數(shù)的零點(diǎn)18.某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:00200(1)請將上表數(shù)據(jù)補(bǔ)充完整;函數(shù)解析式為=(直接寫出結(jié)果即可);(2)求函數(shù)的單調(diào)遞增區(qū)間;(3)求函數(shù)在區(qū)間上的最大值和最小值19.已知函數(shù).(1)若,求的最大值;(2)若,求關(guān)于不等式的解集.20.已知扇形的周長為30(1)若該扇形的半徑為10,求該扇形的圓心角,弧長及面積;(2)求該扇形面積的最大值及此時扇形的半徑.21.年新冠肺炎仍在世界好多國家肆虐,并且出現(xiàn)了傳染性更強(qiáng)的“德爾塔”變異毒株、拉姆達(dá)”變異毒株,盡管我國抗疫取得了很大的成績,疫情也得到了很好的遏制,但由于整個國際環(huán)境的影響,時而也會出現(xiàn)一些散發(fā)病例,故而抗疫形勢依然艱巨,日常防護(hù)依然不能有絲毫放松.在日常防護(hù)中,口罩是必不可少的防護(hù)用品.已知某口罩的固定成本為萬元,每生產(chǎn)萬箱,需另投入成本萬元,為年產(chǎn)量單位:萬箱;已知通過市場分析,如若每萬箱售價萬元時,該廠年內(nèi)生產(chǎn)的商品能全部售完.利潤銷售收入總成本(1)求年利潤與萬元關(guān)于年產(chǎn)量萬箱的函數(shù)關(guān)系式;22.已知集合,集合(1)若“”是“”的充分條件,求實(shí)數(shù)的取值范圍;(2)若,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、C【解析】根據(jù)題意可得,由對數(shù)的運(yùn)算,即可求解,得到答案【詳解】由題意,函數(shù),故選C【點(diǎn)睛】本題主要考查了函數(shù)值的求法,函數(shù)性質(zhì)等基礎(chǔ)知識的應(yīng)用,其中熟記對數(shù)的運(yùn)算性質(zhì)是解答的關(guān)鍵,著重考查了考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于基礎(chǔ)題,2、D【解析】根據(jù)二次函數(shù)的值域求出a和c的關(guān)系,再利用基本不等式即可求的最小值.【詳解】由題意知,,∴且,∴,當(dāng)且僅當(dāng),即,時取等號.故選:D.3、D【解析】分別求和,聯(lián)立方程組,進(jìn)行求解,即可得到答案.【詳解】由題意,函數(shù),且,,則,兩式相加得且,即,,則,故選D【點(diǎn)睛】本題主要考查了函數(shù)值的計算,結(jié)合函數(shù)奇偶性的性質(zhì)建立方程組是解決本題的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.4、C【解析】對稱軸穿過曲線的最高點(diǎn)或最低點(diǎn),把代入后得到,因而對稱軸為,選.5、B【解析】利用零點(diǎn)存在性定理判斷的范圍,從而求得.【詳解】在上遞增,,所以,所以.故選:B6、A【解析】解:由f(x)=ex+x﹣2=0得ex=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出函數(shù)y=ex,y=lnx,y=2﹣x的圖象如圖:∵函數(shù)f(x)=ex+x﹣2的零點(diǎn)為a,函數(shù)g(x)=lnx+x﹣2的零點(diǎn)為b,∴y=ex與y=2﹣x的交點(diǎn)的橫坐標(biāo)為a,y=lnx與y=2﹣x交點(diǎn)的橫坐標(biāo)為b,由圖象知a<1<b,故選A考點(diǎn):函數(shù)的零點(diǎn)7、C【解析】根據(jù)零點(diǎn)存在性定理,若在區(qū)間有零點(diǎn),則,逐一檢驗(yàn)選項,即可得答案.【詳解】由題意得為連續(xù)函數(shù),且在單調(diào)遞增,,,,根據(jù)零點(diǎn)存在性定理,,所以零點(diǎn)一定位于區(qū)間.故選:C8、A【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的圖像比較大小即可.【詳解】令,則,,,由圖可知.9、D【解析】根據(jù)隨時間的推移該人所走的距離的大小的變化快慢,從而即可獲得問題的解答,即先利用時的函數(shù)值排除兩項,再利用曲線的斜率反映行進(jìn)速度的特點(diǎn)選出正確結(jié)果【詳解】解:由題意可知:時所走的路程為0,離單位的距離為最大值,排除A、C,隨著時間的增加,先跑步,開始時隨的變化快,后步行,則隨的變化慢,所以適合的圖象為D;故選:D10、C【解析】利用不等式性質(zhì)逐一判斷即可.【詳解】選項A中,若,,則,若,,則,故錯誤;選項B中,取,滿足,但,故錯誤;選項C中,若,則兩邊平方即得,故正確;選項D中,取,滿足,但,故錯誤.故選:C.【點(diǎn)睛】本題考查了利用不等式性質(zhì)判斷大小,屬于基礎(chǔ)題.11、A【解析】由方程的根與函數(shù)交點(diǎn)的個數(shù)問題,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想方法,作圖觀察y={x}的圖象與y=﹣kx+1的圖象有且只有3個交點(diǎn)時k的取值范圍,即可得解.【詳解】方程{x}+kx﹣1=0有且只有3個實(shí)數(shù)根等價于y={x}的圖象與y=﹣kx+1的圖象有且只有3個交點(diǎn),當(dāng)0≤x<1時,{x}=x,當(dāng)1≤x<2時,{x}=x﹣1,當(dāng)2≤x<3時,{x}=x﹣2,當(dāng)3≤x<4時,{x}=x﹣3,以此類推如上圖所示,實(shí)數(shù)k的取值范圍為:k,即實(shí)數(shù)k的取值范圍為:(,],故選A【點(diǎn)睛】本題考查了方程的根與函數(shù)交點(diǎn)的個數(shù)問題,數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬中檔題12、A【解析】令t=2x(t>0),則原函數(shù)化為g(t)=-t2+t+1(t>0),然后利用二次函數(shù)求值域【詳解】令t=2x(t>0),則原函數(shù)化為g(t)=-t2+t+1(t>0),其對稱軸方程為t=,∴當(dāng)t=時,g(t)有最大值為∴函數(shù)f(x)=-4x+2x+1的值域是故選A【點(diǎn)睛】本題考查利用換元法及二次函數(shù)求值域,是基礎(chǔ)題二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】設(shè)的中點(diǎn)為,連接,由條件判斷是等邊三角形,并且求出和的長度,即根據(jù)周期求.【詳解】設(shè)的中點(diǎn)為,連接,,,且,是等邊三角形,并且的高是,,即,,即,解得:.故答案為:【點(diǎn)睛】本題考查根據(jù)三角函數(shù)的周期求參數(shù),意在考查數(shù)形結(jié)合分析問題和解決問題的能力,屬于基礎(chǔ)題型,本題的關(guān)鍵是利用直角三角形的性質(zhì)和三角函數(shù)的性質(zhì)判斷的等邊三角形.14、(,+∞)【解析】由正三棱錐可得四邊形EFGH為矩形,并可得其邊長與三棱錐棱長關(guān)系,從而可得面積S的范圍.【詳解】∵棱錐P﹣ABC為底面邊長為1的正三棱錐∴AB⊥PC又∵E,F(xiàn),G,H,分別是PA,AC,BC,PD的中點(diǎn),∴EH//FG//AB且EH=FGAB,EF//HG//PC且EF=HGPC則四邊形EFGH為一個矩形又∵PC,∴EF,∴S=EFEH,∴四邊形EFGH的面積S的取值范圍是(,+∞),故答案為:(,+∞)三、15、【解析】畫出函數(shù)圖象,可得,,再根據(jù)基本不等式可求出.【詳解】畫出的函數(shù)圖象如圖,不妨設(shè),因?yàn)椋瑒t由圖可得,,可得,即,又,當(dāng)且僅當(dāng)取等號,因?yàn)椋缘忍柌怀闪?,所以解得,即的取值范圍?故答案為:.16、相交【解析】根據(jù)題意只需判斷圓心到直線的距離與半徑比較大小即可判斷詳解】由題意有圓心,半徑則圓心到直線的距離故直線與圓C相交故答案為:相交【點(diǎn)睛】本題主要考查直線和圓的位置關(guān)系的判斷,屬于基礎(chǔ)試題三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2)有兩個零點(diǎn),分別為和【解析】(1)由函數(shù)為偶函數(shù)得即可求實(shí)數(shù)的值;(2),計算令,則即可.試題解析:(1)解:∵是定義在上的偶函數(shù).∴,即故.經(jīng)檢驗(yàn)滿足題意(2)依題意.則由,得,令,則解得.即.∴函數(shù)有兩個零點(diǎn),分別為和.18、(1);(2),;(3)見解析【解析】(1)由函數(shù)的最值求出,由周期求出,由五點(diǎn)法作圖求出的值,可得函數(shù)的解析式(2)利用正弦函數(shù)的單調(diào)性,求得函數(shù))的單調(diào)遞增區(qū)間(3)利用正弦函數(shù)的定義域、值域,求得函數(shù))在區(qū)間上的最大值和最小值試題解析:(1)00200根據(jù)表格可得再根據(jù)五點(diǎn)法作圖可得,故解析式為:(2)令函數(shù)的單調(diào)遞增區(qū)間為,.(3)因?yàn)?,所?得:.所以,當(dāng)即時,在區(qū)間上的最小值為.當(dāng)即時,在區(qū)間上的最大值為.【點(diǎn)睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的最值求出,由周期求出,由五點(diǎn)法作圖求出的值,正弦函數(shù)的單調(diào)性以及定義域、值域,屬于基礎(chǔ)題19、(1)(2)答案見解析【解析】(1)由題得,利用基本不等式可求;(2)不等式即,討論的大小可求解.【小問1詳解】由,得.,,即(當(dāng)且僅當(dāng)時“”成立.).故的最大值為;【小問2詳解】,即.當(dāng)時,即時,不等式的解集為當(dāng)時,即時,不等式的解集為;當(dāng)時,即時,不等式的解集為.綜上,當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為.20、(1),,;(2),.【解析】(1)利用弧長公式,扇形面積公式即得;(2)由題可得,然后利用基本不等式即求.【小問1詳解】由題知扇形的半徑,扇形的周長為30,∴,∴,,.【小問2詳解】設(shè)扇形的圓心角,弧長,半徑為,則,∴,∴當(dāng)且僅當(dāng),即取等號,所以該扇形面積的最大值為,此時扇形的半徑為.21、(1)(2)萬箱【解析】(1)分,兩種情況,結(jié)合利潤銷售收入總成本公式,即可求解(2)根據(jù)已知條件,結(jié)合二次函數(shù)的性質(zhì),以及基本不等式,分類討論求得最大值后比較可得【小問1詳解】當(dāng)時,,當(dāng)時,,故

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論